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In this paper, we study some continuous-time cash-in-advance mod-
els in which interest rate smoothing is optimal. We consider both
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to our knowledge, the only version of the neoclassical model under
uncertainty that can be solved in closed form in continuous time; and
(ii) we discuss how to characterize the competitive equilibrium of a
stochastic continuous time model that cannot be computed by solving
a planning problem. We also discuss the scope for monetary policy to
improve welfare in an economy in which the real competitive equilib-
rium is suboptimal, focusing on the particular example of an economy
with externalities.

Key words: inflation, growth, interest rate smoothing monetary
policy.

JEL Classification: E31, E43, E52, 042,

*We benefited from the comments of Robert King and Pierre Sarte. Research support

from NSF grant SRB-9511916 is gratefully acknowledged.
tUniversity of Rochester, NBER and CEPR.
Hong Kong University of Science and Technology.






1 Introduction

The US Federal Reserve System is often described as following a policy of
interest rate smoothing (Goodfriend, 1987). In this paper, we discuss some
continuous-time cash-in-advance models in which interest rate smoothing is
optimal: the optimal monetary policy requires a constant nominal interest
rate. We first prove this result in a deterministic model. In this setting we
also show that monetary policy is generally non-neutral along the transition
to the steady state, even though the cash-in-advance constraint applies only
to consumption. This non-neutrality is preserved even when the rate of mon-
etary expansion is constant. Monetary policy can inﬂuence significantly the
behavior of real variables: we show that monetary policy can support any
path for the capital stock that is feasible and that converges to a level no
greater than the steady state of the analogous real economy (where transac-
tions can be carried out without the use of money).

We then extend the model to incorporate stochastic shocks and show
that the optimal monetary policy continues to involve a constant nominal
interest rate, despite the fact that the real interest rate is stochastic. To prove
this we develop two sets of results that are of independent interest. First,
we describe what is, to our knowledge, the only version of the neoclassical
model under uncertainty that can be solved in closed form in continuous time.
Second, we show how to characterize a competitive equilibrium that cannot
be computed as a solution to a planning problem. While the computation of
this type of equilibrium in deterministic continuous time models has become
familiar since the work of Brock (1975), extending this characterization to
environments with uncertainty is non-trivial.

Finally, we discuss the scope for monetary policy to improve welfare in an
economy in which the real competitive equilibrium is suboptimal, focusing

on the particular example of an economy with externalities. We fully char-



acterize the optimal monetary policy and show that interest rate smoothing
is no longer optimal in this setting.

The paper is organized as follows. Section 2 contains our results for
the deterministic model. Section 3 discusses optimal monetary policy in
an economy with externalities. The version of our model that incorporates

uncertainty is studied in Section 4.

2 Money and Growth in the Neoclassical Model

2.1 The Real Competitive Equilibrium

Our analysis will proceed within the confines of the Cass-Koopmans growth
model. It is well-known that the competitive equilibrium for this economy
can be obtained by solving the following optimization problem, which we

formulate using standard notation:

S |
T letdt, 0>0, p>0 1
max/o =5 ¢ c>0,p (1)

subject to: k = f(k) — ¢, with ko > 0 given. (2)

The production function f (k) is assumed to be strictly increasing, strictly
concave, continuously differentiable, and to satisfy the conditions: izlrg fl(k) =
00, and k{_zzg) f'(k) = 0. We refer to this as the Real Competitive Equilibrium
(RCE), because it pertains to an economy in which transactions can be made
in frictionless markets without the use of money.

The Hamiltonian for this problem is given by,
77 -1
Hpcp = [—"—'—

1—-0

] +OL7(k) — ()
The first order conditions are:

c?=40 (4)



6= pb—0f'(k) (5)
The transversality condition is 53’72 fke Pt = 0.
The optimal path characterized by these conditions has the property that
k increases monotonically from ko to the steady state capital stock, kkeg,
defined by the condition: f'(k%og) = p. To simplify the exposition we assume
throughout the paper that ko < kgop-

2.2 The Monetary Competitive Equilibrium

We now consider an economy in which money is valued because consumption
has to be purchased using money.! The resulting Monetary Competitive
Equilibrium (MCE) can be obtained by maximizing the objective function

(1) subject to the following constraints:

k=fk)—c—mmt—2z+4v (6)
c<mt (7)
m =z (8)

Equation (7) is the continuous time analogue of a cash-in-advance con-
straint. It specifies that consumption in any period t can be no greater than
the stock of money held by the agent in that period. In the resource con-
straint m® denotes the demand for real money balances and 7 is the rate of
inflation. The government rebates seignorage through lump sum transfers
whose real value we denote by v.2 These transfers can be negative, whenever

seignorage revenue is also negative.

1Feenstra (1986) and Wang and Yip ( 1992) compare this cash-in-advance approach

with other alternatives for introducing money in this class of models.
2Equation (7) implicitly assumes that government transfers take place after consump-

tion purchases are carried out. This assumption simplifies our analysis. Changing the
cash-in-advance constraint to ¢ < m? + v does not affect any of our results, or yield

additional insights, but makes the proofs more cumbersome.
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The Hamiltonian for our maximization problem is:

-7 —1

1—-0

HMCEZ[ }—i—)\l [f(k)—c—ﬂmd——z+'u]+)\2[md—c]+)\3z (9)

The first order conditions are:

7=+ (10)
A=A (11)

/.\1 = pA; — )\lf,(k') (12)
X3 = pAg + 7TA1 - Ag (13)
de 20, dg[mt —c| =0 (14)

with transversality conditions: tlim Ake =0 and tlim Aamle Pt = 0.
— 00 — 00 A
Let p denote the growth rate of the money supply, p = M*/M*. In
equilibrium, the nominal price level (P) has to be such that real money

demand equals real money supply, m® = M*®/P = m. This implies:
m/m=p—mw (15)

and

v=M?*/P = pum (16)

Thus we can substitute 7 = p— 1 /m and v = um into equation (6) to arrive

at,
k= f(k)—c (17)

Equations (11) to (13) imply that
A2 =MR (18) -

where R = 7+ f’(k) is the nominal interest rate.



We will limit our attention to the cases where the CIA constraint is
binding (including just-binding). Using the fact that m = c, together with
equations (10), (15) and (18) we arrive at:

é=[1+p+f(K)]e—c""/M (19)

The MCE is the solution to the system of differential equations composed
of equations (12), (17) and (19) with three boundary conditions k(0) = ko,
tlgorg Mke Pt =0 and tl_z_:rgzo Ace?* = 0. Once we obtain the solution we need
to verify that Ay > 0 for all £.

Proposition 1 In order for the MCE to reproduce the RCE, it is necessary

and sufficient that the nominal interest rate be constant.

Proof. It is well-known that in the RCE, the growth rate of consumption
is given by
. ) —
¢ _ f ( ) P. (20)
c o

This equation, in combination with the resource constraint (2) and the
boundary conditions k(0) = k¢ and tlirgo ¢ %ke™" = 0, determines the equi-
librium allocation.

To establish sufficiency, suppose that in the MCE, the nominal interest

rate R is constant. From equations (10) and (18), we have
¢’ =M14+R) (21)

With R constant, equations (21) and (12) imply that the growth rate of
consumption is also governed by equation (20). Since equation (17) is the
same as the resource constraint (2), and since tlyoré Ake ?t = 0 is identical
to tl}f?o ¢ “ke P* = 0 for constant R, the MCE reproduces the RCE.

To establish necessity, note that in order for the MCE to reproduce the

RCE, the marginal utility of consumption must be equal in the two equilibria.
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That is A\;(1 + R) = 0. An inspection of equations (5) and (12) reveals that
6 and ), grow at the same rate and thus R has to be constant for A;(1 + R)
to equal 6. ®

REMARK: In the economy described here, the RCE is Pareto Optimal.
Proposition 1 shows that the Friedman rule R = 0 is just one of the many
rules that can lead to Pareto optimality in a MCE. The key feature of op-
timal monetary policy that we find is that it makes the effective price of
consumption in the MCE (A;(1 + R)) identical to the price of consumption
(6) in the RCE. It is important to note that this result is not an artifact
of our continuous time setting. Carlstrom and Fuerst (1995) show that a

similar result holds in discrete time.

Proposition 2 The money growth path that reproduces the RCE in an MCE
must be time varying unless the economy is already at the steady state or
o = 1. During the transition to the steady state it is optimal to increase the
growth rate of money when 0 <1 and to decrease it when o > 1. Regardless
of the value of o, optimal monetary policy implies that inflation increases

during the transition to the steady state.

Proof. @ We have already shown that R has to be constant. When R is
positive, we have Ay > 0, so the CIA constraint is strictly binding. When
R = 0, the CIA constraint is just binding. In other words, we always have
¢ = m. Using the fact that ¢ and m grow at the same rate we can write the
nominal interest rate as R = p+ (1 — J)f’(k)/a + p/o. Since k rises during
the transition this expression implies that to keep R constant p must rise
when ¢ < 1 and fall when ¢ > 1. The real interest rate (f'(k)) always falls
as the economy moves toward the steady state, thus inflation must rise to

keep R constant. B



Note that when the economy is at the steady state, f'(k) is constant.
Hence a constant  leads to a time invariant nominal interest rate. When o =
1, a constant rate of money growth generates a constant R even during the
transition. What is special about o = 1?7 During the transition to the steady
state, the real interest rate declines as the capital stock expands. When the
growth rate of money is constant, the rate of inflation increases during the
transition. This is due to the fact that the growth rate of consumption is
falling in response to declining real interest rate and that m = gt —¢/c. In the
case of o = 1, the fall in the real interest rate is exactly offset by the increase

in the rate of inflation, leaving the nominal interest rate time invariant.

Proposition 3 Any monotonic capital path {k(t)}32, that satisfies, (1) c(t) =
f(k) =k >0 and (2) lim k(t) = k* < kjyop, can be supported in a MCE by
choosing an appropriate path for the money supply. The paths for the money
supply that support capital stock paths that converge to k* < kg involve
hyperinflation.

Proof. Since k£ > 0 and k(t) converges to k*, we have c(t) < ¢* = f(k*)
for all t. Equation (12) implies that the values of \;(t) associated with such
a capital path, are monotonically decreasing over time. Thus by solving
equation (12) for A;(t) with A;(0) = (c*)™?, we can make sure that A;(t) <
(c*)™% < ¢(t)™?. Hence, A\y(t) > 0 is guaranteed for all t. From equation (19),
we can back out the money growth rate {u(t)}:2, that supports this path. It
is easy to verify that all the transversality conditions hold. Closer inspection
of the equilibrium equations show that in the case where k* < k-, it must
be true that lim A (t) =0, Lim A2 (t) = (c*)7?. Thus, equation (18) implies

that R — oo and hyperinflation is always involved in this circumstance.



REMARK: No money growth path can induce a capital stock path that con-
verges to k* > k}op. Equation (12) implies that the ); trajectory associated
with such a capital path converges to co. Thus Ag(t) = c(t)™7 — M(t) < 0
when t is large enough because c(t) — f(k*). As a result, R(t) = Ao (t)/M1(2t)
will eventually be negative. Hence, {k:}2, cannot be supported as a com-

petitive equilibrium with money.

Proposition 3 implies that monetary policy can be quite powerful in im-
proving welfare in economies in which the competitive equilibrium is subop-
timal. We will examine this issue in detail in Section 3.

Our results so far involve situations in which the growth rate of the money
supply varies over time. We now focus on the case of constant rates of
monetary expansion and examine the standard question of whether money is
neutral. The following result is similar to that obtained by Stockman (1981)

in a discrete time version of the model we are considering.

Proposition 4 (Steady state neutrality) When money ezpands at a constant
rate p and the economy is at the steady state, money is neutral, i.e. the values

taken by the different real variables are independent of .

Proof. Equations (12) and (17) imply the usual steady state conditions
f'(k) = p and ¢ = f(k). Hence the steady state values of k and c are
independent of y. The growth rate of money affects only the steady state

value of A; (see (19)) and the nominal interest rate.

Proposition 5 (Non-neutrality during the transition) When money expands
at a constant rate p and o # 1, money is not neutral in the transition toward

the steady state.



Proof. We show by contradiction. Suppose the real allocations are inde-
pendent of the money growth rate. Equation (19) implies that A (t, i) /0p =
—c? 2. Equation (12) implies

2\ ,
8,ualt [o = f'(k)] O\, p) /O

= —[p-f kN (22)

But we also have

P 0 (e

opdt ot op
= —-orc""lc')\f — 2% MM
= —ac® ]\ -2\ [p— f(K)] (23)

Comparing (22) with (23), we find that

Hence this MCE reproduces the RCE. When o # 1 and under the assumption
that the economy is not yet at the steady state, Proposition 2 implies that
any money growth path that reproduces the RCE must be time varying. A

contradiction. H

REMARK: When o = 1, the proof of Proposition 2 shows that any constant
p will ensure a constant nominal interest rate. Provided that the nominal
interest rate is non-negative, this u allows the MCE to reproduce the RCE.
Hence money is neutral on the transition when o = 1. It is interesting to
'note that our results on neutrality are identical to those originally stressed by
Cohen (1985) in a continuous time model in which money enters the utility

function.® A different conclusion is reached in Abel (1985) in a discrete time

3Cohen’s (1985) utility function is u = [(c"‘m‘“"‘)l—” - l] /(1—0).
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CIA model. There, he finds that when the CIA constraint applies only to con-
sumption, money is always neutral along the transition path independently
of the form taken by momentary utility. Our study reveals that the different
conclusions between Cohen (1985) and Abel (1985) are not the outcome of
difference in MIUF and CIA, instead they are the outcome of difference in
time frame. Clearly, if the length of time required for monetary settlement is
infinity, the CIA constraint is ineffective and any money rule can reproduce
the RCE and thus money is neutral. As the length of time becomes finite
and remains positive, Abel showed that constant money growth rules are
still neutral but fail to reproduce the RCE. When the length of time shrinks
to zero such as in our model where instant monetary settlement is required,
money stops being neutral unless o = 1 or the economy is already at steady

state.

REMARK: To study the effects of monetary policy on long run growth we
adopted the standard assumption that labor supply is exogenous. When
labor supply is endogenous, or money is introduced through a transactions
technology in which real balances allow agents to economize on “shopping”
effort (as in Kimbrough (1986)), interest rate smoothing continues to be
optimal. However, in order to maximize welfare, the value of the nominal
interest rate must be zero. Only the Friedman rule guarantees that monetary
policy does not distort the labor-leisure choice and minimizes “shopping”
time. The results in Correia and Teles (1996) suggest that, surprisingly, the
optimality of the Friedman rule survives even when the revenue necessary
to finance the negative inflation tax is obtained through distorting taxes
on capital and labor. Unfortunately, currently available estimates of the
elasticity of labor supply are very imprecise, which prevents us from gauging
the welfare loss that results from maintaining a constant positive value of the

interest rate, instead of setting R = 0.
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3 Money and Growth in an Economy with

Externalities

In an economy with no market imperfection or tax distortions, the RCE is
Pareto optimal. We have seen that for any policy that maintains a constant
nominal interest rate, the MCE reproduces the RCE, and is thus optimal.
However, when the RCE is suboptimal and monetary policy is the sole policy
instrument, it is no longer desirable to engage in interest rate smoothing. In
this section we show how the principles in Proposition 3 can be used to
construct a money growth rule that dominates interest rate smoothing. For
a concrete example, we study an economy with a production externality.

Suppose the production function exhibits a positive externality,

y= f(k:ka)

where k, is the per capita capital stock in the whole economy. The production
function f(k,k,) is strictly increasing in both k, and k,, and f is concave
in k and continuously differentiable. We assume that izlrg fi(k, k) = 0o, and
kliTé fi(k, k) = 0,7 =1,2. We also assume that g(k) = f(k,k) is concave in

k so that the social planner’s problem is well-defined.

3.1 The RCE

Following Kehoe, Levine, and Romer (1992), we obtain the RCE by solv-
ing the following Pseudo-Planner’s problem: maximize (1) subject to the

constraint,

k = f(k, kq) — ¢, with ko given. (25)
The Hamiltonian for this problem is given by,
77 —1
Hrop = |7——|+ 0[f(k ka) — c] (26)
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The first order conditions are:
c?=0 (27)

0 = pf — 0f,(k, k) (28)

where the equilibrium condition k, = k is substituted in equation (28) only
after the derivative of Hrcr with respect to k is taken. Let the steady state
be denoted by kiop: fi(khcE,khcg) = p- The transversality condition is

tlz'm fke "t = 0.

3.2 The Pareto Optimum

The Pareto Optimum is the solution to the following central planner’s prob-

lem: maximize (1) subject to the constraint,
k= f(k,k) — ¢, with ko given. (29)

The Hamiltonian for this problem is given by,

=7 -1

1—-0

Hpo = [ ] Falf(k k)~ d (30)

The first order conditions are:
c’=n (31)

1= pn—nlfik k) + fa(k, k)] (32)

The transversality condition is nke™”* — 0 as t approaches infinity. Let the
steady state be denoted by k¥y: fi(kFo, kro) + fo(kFo, kpo) = p.

Inspection of the equations characterizing the RCE and the Pareto Opti-

mum shows that there is only one difference between these: in equation (32)

the marginal product of capital is f;(k, k) + fa(k, k), whereas in equation (28)

it is fi(k, k). The difference arises because the central planner internalizes

the externality.
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3.3 The MCE

The MCE can be obtained by maximizing (1) subject to the following con-

straints, expressed using the same notation defined in Section 2.2:

k=f(k k) —c—mmt—2+4v (33)
c<md (34)
mé =z (35)

All the Propositions in the previous section hold for this economy.

Even though monetary policy is not the most obvious policy instrument
for correcting the effects of the externality, it is interesting to determine how
far it can lead us, since the answer is likely to apply to many other sources of
suboptimality. Can monetary policy improve welfare? Can it achieve Pareto
optimality? We will see that the answer to the first question is yes, while the
answer to the second is no.

Our Proposition 3 provides the key to characterizing the best outcome
that monetary policy can achieve in this economy. We have shown that
it is possible to use monetary policy to support any path that satisfies the
economy wide resource constraint and for which tlivg) k(t) = k* < k}og. The
question is then, which of these supportable paths is the best. This amounts

to solve the following problem: maximize (1), subject to the constraints,

k= f(kk)— c with ko given. (36)
k

and < kger

The Hamiltonian for this problem is given by,

= | ] e -+ tien =) (37)

The first order conditions are:

c?=¢ (38)



£ =pt —E[fik, k) + falk, k)] + ¢ (39)
©>0,khor— k>0, 0(kfcg — k) =0 (40)

The transversality condition is tl'im £ke~*t = (. Note that it is impossible for
¢ to be zero all the time because in this case k — kpp > kEog. The possible

solutions must take the form:

Owhent<T
o(t) = , (41)
@*whent>T

for some T'. For each T, let us call the allocation that satisfies equations (38)-
(41), {k7(t), T (t)}°. Let T be the maximum of such Ts. The trajectory
corresponding to T is marked BMCE in Figure 1.

In Figure 1, the vertical line on the left (k = k} ) represents the RCE
condition § = 0. The vertical line on the right (k = k},,) represents the
analogous condition (7 = 0) that corresponds to the planning problem. Since
the central planner internalizes the production externality, kpy, > kgcg- The
path PO illustrates the Pareto optimal path of capital, which we have shown
to be unreachable by an MCE. The Friedman rule allows us to reproduce the
RCE but it is not the best monetary rule. We show in the next proposition
that the best achievable path in a monetary economy is the BMCE {k7(t)}$°.
By construction, the BMCE satisfies the first order conditions in the central

planner’s problem up to time T . At time T the capital stock becomes equal

15



to kX and remains at that point thereafter.

61,8 ) 6=0 7=0

——— k=0
ks ko k
Figure 1

Proposition 6 {kT(t), cT(t)}° is superior to {k7(t), T (t)}2q for T < T.

Proof. To begin with, for any t > T, ¢T(t) = c}cg. Thus, we only need
to compare the period [O,T]. However, by construction, it is obvious that
{ET(t), cT(t)}T solves

Tcel=o -1
_.ptd
max /0 =5 ¢ t (42)
k = f(kk)— c with ko given. (43)
and kE(T) = kfeg

and {kT(t), cT(t)}7 satisfies the two constraints above. Thus, {kT(t), T ()}
is superior to {kT(t), cT(t)}>. W
These results show that monetary policy can improve on the RCE of this

economy, but falls short of achieving Pareto Optimality.
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4 Money and Growth in a Stochastic Econ-
omy

We will start by describing two closed form solutions to the real competitive
equilibrium of a stochastic version of the neoclassical growth model. Even
though to make progress we will have to make specific assumptions about
functional forms, these restrictions pay off, in the sense that the model dis-
plays an elegant, insightful closed form solution. We then use one of these
closed form solutions to show that optimal monetary policy entails maintain-

ing a constant nominal interest rate.

4.1 The Real Competitive Equilibrium

The RCE can be computed as a solution to a problem where a representative
agent maximizes expected lifetime utility subject to the economy’s resource
constraint:

1-o

max By /°° e —dt, p>0,0>0 (P1))

0

dk = (Ak® — c)dt + kedz + kdq

The capital stock follows a generalized Ito process. This process comprises
two forms of uncertainty: dz is the increment of a Wiener process, while dgq is
the increment of a Poisson process with arrival rate A\: dg = 0 with probability
1 — Mdt and dq = —u with probability Adt, where u is a random variable.
The two increments, dz and dq are assumed to be independent. There are
two cases in which we can solve this model in closed form. The first, which is
well-known, corresponds to the case of a = 1. Strictly speaking this is not a -
version of the neoclassical model. It is the ubiquitous “AK” model, popular

in the recent growth literature.
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Proposition 7 When o =1 the solution to [P1] is given by the policy func-
tion ¢ = [p— AL = o) + }o(1 - 0)e® + A= AB,(1 —w)' | k/o

Proof. The Hamilton-Jacobi-Bellman equation for this problem is:

0 = max 161__—: _ pJ(k) + J'(k)(Ak — c) +
AB, [T(E(L = u)) = J(B)] + 57" (k)e"K? (44)

Consider the following guess for the value function J(k), which we will
kl-o

later verify to be correct: J(k) =b The optimum condition for ¢ implies

1-0°

¢ = J(k) =bk". (45)
Combining (45), (44) and our guess for the value function we can solve

for b, verifying at the same time that the value function has the form that

we postulated:
- [p — Al —0)+3i0(l—0)2 + A= AE,(1-u)'"]"°

o
Using this solution for b in equation (45) we obtain the policy function
forc. W
The second solution requires the same restriction used in Xie (1991) in a

deterministic context: a = 0.

Proposition 8 When a = ¢ the solution to [P1] is given by the policy func-
tion ¢ = [p +20(1—0)e? + A= AE,(1 - u)l‘“] k/o.

Proof. The Hamilton-Jacobi-Bellman equation for this problem is:

0 = max 101__60 — pJ (k) + J (k)(Ak® —c) +
AB, [J((L = ) = J(R)] + 3" (B)e2K? (46)

18



Consider the following guess for the value function J(k), which we will

later verify to be correct: J(k) = a + b’“ll:: The optimum condition for ¢
implies
c?=J(k)=0bk"". (47)

Combining (47), (46) and our guess for the value function we can solve
for a and b, verifying at the same time that the value function has the form

‘that we postulated:

b

_[p+30(l—0) + A AB(1 - u)l"’]—a
a

a=0bA/p

Using this solution for b in equation (47) we obtain the policy function
for c. B

Notice that the only difference between the consumption decision rules
when o = 0 and @ = 1 is that b is independent of A in the former case.

It is possible to generate other closed form solutions for the stochastic neo-
classical model by postulating a decision rule for consumption and deriving
the utility function that makes this rule optimal, as in Chang (1988). How-
ever, these closed form solutions often imply stringent restrictions tying, not
only the parameters of preferences and technology, but also the parameters of
the shock process. One example of a solution that requires these restrictions
is a version of the closed form discussed in Barro and Sala-i-Martin (1995,
page 78) which incorporates uncertainty. Barro and Sala-i-Martin show that
if o = %:—56— > 1, where 6 is the rate of depreciation, the optimal policy func-
tion for consumption is: C = "T_IAICO‘. When we incorporate uncertainty

we need to require the following awkward condition to obtain a closed form:
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p+8(1 — ac) = —1ao(l — ac)e®. When this condition holds the decision
rule retains the same form as in the deterministic case.

We will now study a monetary version of this model. Since introducing
money will complicate the problem considerably we will restrict ourselves

to the case in which a = 1 and ignore the jump process component of the
stochastic shock (A = 0).

4.2 A Monetary Economy

As in previous sections money will be introduced in the model through a
cash-in-advance constraint.® Our first task is to derive the repfesentative
agent’s budget constraint. We formulate the agent’s problem as having to
choose, at every point in time, how much of his nominal wealth (W) to invest
in productive capital, nominal bonds (B ), which yield a nominal interest rate
of R, and money holdings (M). This formulation is exactly equivalent to the
one adopted in Sections 2 and 3 but it is more convenient, from a notation
standpoint, to handle the presence of uncertainty. Nominal bonds will be in
zero net supply in equilibrium, but including them at this stage of the analysis
will allow us, later on, to derive the expression for the nominal interest rate.

The budget constraint can be written as:

Pdk + dM + dB = P(Ak — c)dt + Pkedz + Vdt + RBdt

where P represents the price level. The nominal lump sum transfers which
rebate the proceeds of the inflation tax are denoted by V.

Written in real terms the budget constraint is:

dM dB RB
dk + S 4+ 2= = (Ak — dz + vdt + —
k P P (Ak — c)dt + kedz + vdt + 2 dt

1Faton (1981, section 6) studies a similar model in which money is held despite the

absence of a cash-in-advance constraint. In Eaton’s monetary economy there are no bonds,

only money and capital. Money is held because it has a lower risk than capital investments.
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We conjecture that the equilibrium law of motion for P is the following

geometric brownian motion process:

dP = Pndt — Pedz

We will verify that this law of motion holds in equilibrium and that the
average rate of inflation, 7, is constant whenever the money supply expands

at a constant rate u. The change in the agent’s real wealth (denoted by w)
is, by definition:

M B
= “V+d(=
dw dk:+d(P)+ (P)

Notice that d (%—) and d (%)can be written as:

P P P
B aB 1
d('ﬁ) = ?*Bd(ﬁ)

Since P follows a geometric Brownian motion, d (—};) has to be computed

1 T g2 €
d('ﬁ)"(‘ﬁ“ﬁ)d”"ﬁdz

This allows us to write the budget constraint in real terms as:

() - Bl

using Ito’s lemma:

dw = (Adyw — ¢)dt — (1 — ¢1) wrdt + (1 — ¢;) wedt + vdt + Rppwdt + wedz

where ¢; and ¢, denote, respectively, the fractions of real wealth devoted to
physical capital and to nominal bonds, and v = V/P.

The cash-in-advance can be written as:

c=(1—¢1—$)w
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The rate of inflation, dP/P and the lump sum transfer that rebates the
proceeds of the inflation tax (v) both depend on the evolution of per capita
wealth in the economy, which we denote by w. This variable is outside the
control of an individual agent but, in equilibrium, since all agents are iden-
tical, w =w. In a deterministic environment it is easy to take the path of w
as exogenous when we compute the conditions that characterize the individ-
ual optimum. In a stochastic environment computing such an equilibrium
is more complex. The optimization conditions do not involve computing
derivatives with respect to w in a way that would make it easy to treat the
process for W as exogenous. To make progress we first have to write the value
function J as depending on both w and . Second, we have to conjecture a
law of motion for @ and guarantee that this law of motion will coincide in
equilibrium with that of w.

Our conjecture for the law of motion of W is:
d b= g(@)dt + h(D)dz
The functions g(.) and h(.) will later be selected so that in equilibrium,

W= w.

The Hamilton-Jacobi-Bellman equation for this problem is:

l1-o
0 = g CEHTDE i

+J1 [A(j)lw — (1 — ¢ — ¢2)w —_ (1 — ¢1) w (7!' — 62) + v+ R¢2w]
+Jag(@) + —12—J11'w252 + Jypweh(w) + %Jn[h(ﬂ))]‘"

We will use the following guess for the form of the value function, which

we will later verify to be correct:

(w+ B W)~

o
I, B) = b2
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The optimality condition for ¢, is:

(11— oy = (w+B0) [p(A+1+m—)] " (48)

The optimality condition for ¢, is:

(1— 1 — dpa)w=(w+B D) [b(1+R)] (49)

These two equations imply that the equilibrium nominal rate is:

R=A+n—¢€ (50)

Values of the nominal interest rate greater than this would imply an infinite
demand for nominal bonds (which in equilibrium are in zero net supply).
Lower values of the nominal interest rate would drive the demand for nominal
bonds to —oo.

Equation (50) is interesting because it is a modification of the standard
Fisherian equation for nominal interest rate determination that takes uncer-
tainty explicitly into account. Now that we determined the expression for R,
we can economize on notation by setting ¢2 equal to its equilibrium value of

zero and redefining ¢; as ¢:

¢ = 0
¢ = ¢

Equation (48) defines a function ¢(w,®w). In order to have w =w in

equilibrium, we must select g(.) and h(.) as follows:
g(@) = Ap(w, ) B — (1 — $(®, )@ ~ (1 — $(@, D)) W (w — ) +v

and

h(w) = de
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Using equation (48) and the fact that in equilibrium the lump sum trans-

fers v are given by:

v =l - §(@,)) &

we can write:

g(@) = [A-— (A+1+7— e —p) [b(A+1+7r—62)]_1/a ¢ +ﬁ)] w

Using these equations for h(i) and g(W) and re-arranging terms, we can

re-write the Hamilton-Jacobi-Bellman equation as:

0

= [pa+1+m—e)] 7 e+ BE) - phlw+ B D)
Aw—pA+1+7— )] (w+ B D) A+1+7—e?)
tub(A+1+m—) (14 p)
+bB(1— o) [A—— (A+14m—e—p)p(A+1+m—e)] " (1+ﬁ)] @

+b(1 — o) {

—%(1 — 0)oe®b(w + B W)

For the above equation to hold for any w and w, it is necessary and

sufficient that:

0 = [b(A +1+m— 52)]_(1_6)/0 — pb

+5(1 — o) [A— [b(A+1+7r—.e2)]”1/‘r (A+1+7r—52)]

1 2
—-2—(1 — 0)oe’b (51)

and

0

= [pA+1+7- ) 5 oo

11— ) [p(A+14+7— )] [u(1+8) — BA+ 1+ 7~ &)
+b8(1 — o) [A— Ar1sm—e—p)fpA+1+m-e)] " @ +ﬂ)]

——%(1 — 0)oe’bB (52)
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It is important to note that when we compare coefficients to guarantee
that the laws of motion for w and @ coincide we need to replace ¢, making
use of equation (48). Otherwise we would be treating ¢ as a constant, which
would yield incorrect results.

Equation (51) implies that:

p—(1—-0)A 1

pA+1+m-) " (A+14m—et) = +5(1=0)e (59)

o
Also, (51) and (52) imply that:
u=,8(A+1+7r—s2—u) (54)
The cash-in-advance constraint implies that, in equilibrium:
M/P=(1-gw=[oA+1+7-)] " (1 +5)D

Differentiating this expression using Ito’s lemma yields,

p—m+e’ = g(@)/w
= A—(A+1+7r—.e?—u)[b(A+1+7r—e2)]'””(1+ﬁ)
= A—(A+1+7r—52)[b(A+1+7T—-52)]_1/a,using(54)
_ A_p-—(l——a)A 1

A2
pn 2(1 o)e
So A
A+7r-—52—u=£:——(l:—(—f—)—+%(1—0)52 (55)

and thus,

c _ Q-9

w o w

= ari+n-)] @+
A+l+7m—¢

-1/o
= [b(A+1+7T—52)] |:A+1+7r—52—,u
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_[p-(=0A 1 ., 1

N [ o +2(1 0)8]A+7r——62——u+1

_ p—(1-0)A 1 — o)e? 1

- [ o F 2(1 ) ] ["—"Q;_EM+%(1—U)52] +1 (56)

It is straightforward to verify, at this point, that whenever 4 is constant,
the average inflation 7 is also constant and that the form of the value function
and the laws of motion of P and of w all conform with our conjectures.

We are now ready to state our main result in this section:

Proposition 9 Whenever the rate of money growth is constant, the nominal
interest rate is also constant and the MCE coincides with the RCE.

Proof. In the real economy the optimal consumption function is:

c= [—’i—’“—(—lg_—flé +%(1—a)52] k

From (56), we see that

1
P e

Hence, (56) and the fact that k = ¢w imply that, regardless of the value of
1, the decision rule for consumption coincides with that of the real economy.

The constancy of the nominal interest rate can be verified by using equations

(50) and (55):

p—(1-0)A 1

R=p+ —i—i(l—cr)es2

g

|
This result shows that a monetary rule that keeps the nominal interest
rate constant allows the MCE to display the same relative prices of consump-

tion as the RCE, both over time and across different states of nature.
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