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Abstract

This paper examines the role of skilled labor in the growth of total
factor productivity. We use panel data from manufacturing industries
within the United States to assess the extent to which productivity
growth in yearly cross—sections of U.S. manufacturing industries is tied to
industry shares of skilled labor inputs. We find evidence of an explosion in
skilled—labor augmenting technological progress during the period from
approximately 1973 to 1981, which coincides with a period of suddenly
increasing wage inequality and rapid growth in the relative wages of
educated and experienced workers. We also provide evidence from
aggregate manufacturing data that confirm this shift pre- and post—1973.
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1. Introduction

Evidence is accumulating that the last 25 years has witnessed a dramatic change in the
way goods are produced. Both anecdotal and systematic evidence suggests that during
this period firms began to replace relatively unskilled workers by skilled workers and
equipment at an unprecedented rate. This was not due to the increased availability of
skilled labor, since both the relative wages and employment of skilled workers
increased dramatically. This process is usually referred to as “skill-biased technical
change,” and is widely regarded as the primary factor behind the increased dispersion
of the income distribution during the same time period.

In this paper we examine this phenomenon from another angle. Industries may
differ in their receptiveness to increased knowledge, and consequently in their
productivity growth rates. What we call “skilled—labor augmenting technical progress”
attaches itself more readily to educated or experienced workers, and consequently to
those industries that are more skilled labor-intensive. Improvements in electronics and
computers, for example, presumably have a larger impact on the effective labor input
of engineers and statisticians than of farm workers and janitors. Furthermore, since
skilled labor—-augmenting technical progress can induce skill-biased technical
change—under conditions which we suggest are present in U.S. manufacturing—a
finding of skilled labor—augmenting technical progress could “explain” the acceleration
of skill-biased technical change. In any case, it offers additional independent evidence
of unusual structural change during roughly the same time period.

We examine the extent of skilled labor-augmenting technical progress in U.S.
manufacturing over the period 1958-1991.! We can measure the extent to which
industries differ in skilled relative to unskilled labor input, and use that cross—sectional
variation to identify the contribution of this phenomenon to overall growth. We find

evidence of a sudden explosion in skilled-labor augmenting technological progress

! An earlier paper, Kahn and Lim (1994) is based on the same general idea.



during the period from approximately 1973 to 1981. This roughly coincides with a
period of suddenly increasing wage inequality, as well as rapid growth in wages of
young educated workers. Since one of our méasures of skill level is related to years of
schooling, we can also claim to have controlled at least to some extent for growth in
human capital.

We also find little consistent evidence of an association of productivity growth
with industry shares of other inputs such as capital, or more specifically, capital
equipment, even after allowing for technical progress only embodied in new equipment.
This would seem to cast doubt on stories that stress plant retooling as the sine qua
non of technical change during this time period. But there is some indication that the
period of skilled labor-augmenting technical prbéiéss was immediately preceded by a
shorter period of regress—as though the initial impact of technology were negative, a
possibility that Hornstein and Krusell (1996) and others have argued for as a partial
explanation for the productivity slowdown.

In addition to exploring the empirical relationship between skilled labor, output
growth, and productivity growth, we also examine a completely separate set of
evidence based on steady state implications of the technology with aggregate time
series data. Somewhat surprisingly, these results corroborate the panel data findings
with regard to skilled labor effects, even though they are based on a completely
independent dimension of the data. They also provide the only evidence for similar

effects from capital equipment.

2. The Model

2.1. Technology

We conceive of “knowledge” as an aggregate state variable that dictates the potential

effective labor per worker as function of the worker’s human capital. For convenience



we follow the practice of others in this area and divide workers into two broad
categories: “skilled” and “unskilled.” (Obviously the ideas generalize to a more
continuous classification.) What we call skilled labor-augmenting technical progress is
an advance in knowledge that augments the effective labor of skilled workers by more
than the effective labor of unskilled workers. For example, the development of advanced
equipment that has the potential to replace unskilled labor with a smaller amount of
skilled labor would fall into this category. 2General (e.g. Hicks—neutral) technological
progress, in contrast, adds to the effective labor of both skilled and unskilled alike.

Consider a set of industries indexed by 7. Each of the industries uses physical
capital (plant and equipment), unskilled labor, and skilled labor, to produce its output.
Depending on the data requirements, we will specify production either in terms of
value added or gross output. In the first case, a representative firm in industry ¢ at
date t has a constant returns to scale production technology that in its most general
form we specify as:

Yit - Ath‘z(th &Eta N';H:7 N;H:% (21)

where Y;; is value added, K7, is “plant,” K¢, is equipment, N is the number of unskilled
workers at the firm, and N}, the number of skilled workers. In the second case, the

production function is
)/z: = A‘LtE(Kﬁ) KftEt’ N:;;Hf’ Nzut'H;La M'LtXt)a (22)

where Y} is gross output, and M, is a vector of material inputs. For the sake of
exposition we will proceed using (2.1), as it should be clear how to apply the same
analysis to (2.2).

The various terms multiplying the inputs represent increases in efficiency per

2 As we shall see, however, this is not exactly the same thing as skill-biased technical change,
which is an increase in the relative demand for skilled labor. This hinges on whether skilled
labor’s share increases or not.



measured unit of that input. Thus, for example, H represents the efficiency of skilled
workers. In practice, of course, these terms can only be identified relative to some time
when they are defined to be equal to one. Also, as will be clear below, that they are
independent of 7 and that there is no efficiency term multiplying KP represent
identifying assumptions. We will discuss these and other issues surrounding the
interpretation of these variables as we go along.

We assume that the firm is competitive, and faces market wages W and W} (per
unit of effective labor), rental prices of plant and equipment @} and Qf, and market
prices {P;;}. Note that the production function differs by industry, and that A; has
both an aggregate and idiosyncratic component. H; and F;, on the other hand, are

purely aggregate. As will be clearer below, these are essentially a matter of definition.

2.2. Equilibrium

The firms face the following myopic optimization problem:

Max - B A Fy(KG, KBy, NG HE, NG HY) — QE K — QFKG — Wi Hi N, = Wi Nig (2.3)

jirtVit

Firms’ optimality conditions yield that the payment to each input factor must be equal

to its marginal revenue products. Thus we have,

RtAitFli(thaKietEta NiStH:) NﬁHf) = Qf
-PLAzF'LKf7KzeE7NstiN:LHu = GE'

t t2( t 4t tL4e t t) Qt/t V?L,t (2‘4)
PitAitFBi(Kﬂa f}Et, NiSthsa NEH;L) = Wts
Py Ay Fu (KL, KgEy, NGH NG HY) = Wi

The factor shares at each point in time are denoted ok, where k = p, e, s,u. Constant

returns to scale implies
QYKE _ Fu()KY
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and similarly for the other factors. It is the variation in these factor shares across
industries that will allow us to decompose productivity growth into skilled-labor

augmenting and other components. We have

AlnY, = AlnA;+dd,AlnKE +af,(Aln K, + E) (2.5)
an,(Aln N+ AIn H) + o, (Aln N + Aln HY)

which implies that total factor productivity (TFP) growth satisfies the following:

AInTFP; = AlYy— (e, AlnKE + of,Aln K, + o, AIn N, + o Aln N} )(2.6)
= AlnAy+ o AInE; + o ,Aln HY + aj;Aln H.

)

Thus an industry’s value added TFP growth will depend in general on its equipment
and skilled labor factor intensities, as well as the extent to which technical progress
takes the form of growth in A, E, Hor H*.

Our empirical strategy is essentially to turn this idea on its head and estimate the
relative importance of these components in any time period by the extent to which
TEFP growth cross—sectionally during that time is associated with these factor shares.
We will also show that if the production technology is CES but not Cobb-Douglas, the
system (2.4) can also be applied to aggregate time-series data to obtain alternative
estimates of growth in the three components.

It should be noted that this approach in principle fails to distinguish between
factor—augmenting technical progress and improvements in the quality of inputs. For
capital this may not be an important distinction (presumably most changes in E are
changes in input quality, though one can imagine increasing the productivity of a given
piece of equipment). For labor, though, there is arguably a significant difference
between the two—Klenow (1996) refers to the two phenomena as “ideas” and “human

capital.” For example, H* could grow because workers themselves are better—educated,



or because advances in knowledge affect their productivity relative to that of other
inputs. Nonetheless, we will stick with the “ideas” interpretation, in part on the basis
of evidence from education—based definitions of skill (which arguably control at least to
some extent for human capital), and in part on the ﬁndihg that H° jumped rather
sharply relative to any plausible measure of human capital in the skilled work force.
Although in principle both knowledge and human capital are stocks, we would argue
that a rapid increase in knowledge is more plausible than a rapid increase in overall
human Capital, since the former could, for example, come from the work of a single

genius, while the latter requires educating the average worker.

3. Empirical Implementation

3.1. Data

Our data come from two main sources: The Current Population Survey (CPS) and the
Annual Survey of Manufacturers (ASM). We make use of the CPS outgoing rotation
data set and the manufacturing productivity (MP) database, both compiled by the
National Bureau of Economic Research. From the. CPS outgoing rotation survey we
have data on individual workers’ industry, education level, and earnings, annually over
the period 1979-1991. We then construct industry profiles of workers. For example, to
get earnings-based shares of college—educated workers in a particular industry, we sum
the earnings of college-educated and non—college-educated workers in that industry
and compute the ratio. We used this to compute, for each industry represented in the
survey and for each year, the share of skilled worker earnings to total worker earnings,
where “skilled” is defined by education level. Our base case cutoff for skilled workers is
a college education (i.e. 16 years or higher), but we report other thresholds as well.
From the MP dataset we obtained 4-digit industry data on total factor

productivity growth, factor payments to production and non—production workers, value



added, employment, and stocks of capital equipment and structures annually over the
period 1958-1991. In addition to providing the data on gross output-based TFP
growth and capital stocks that we need to merge with the CPS data, we also consider a
measure of skilled labor’s share based on the earnings share of non—production workers.
Finally, in computing labor’s share in value added for each industry, we multplied the
earnings in the MP data, which do not include fringe benefits and other non-wage
compensation, by the corresponding 2-digit industry ratio of total compensation to
wages for each year as computed from National Income and Product Accounts data.

There are two difficulties in merging the two data sources. The first is that the
industry classifications in the CPS do not line up with the standard SIC numbers.
There are CPS industries that include more than one SIC industry and vice-versa. As
a consequence, for the work that involves merging the two data sets it was necessary to
construct the “finest common coarsening” of industry classifications. After eliminating
industries in which data are not available for the entire 1979-91 period, we were left
with 67 industries. These were mainly three-digit level industries but there were
several two— and four—digit industries as well, the latter notably including SIC 3573,
“Electronic Computing Equipment.” Table 1 provides the breakdown of these 67
industries in detail.

The second difficulty is that one cannot aggregate gross output, or gross
output-based TFP without a great deal more information about input—output flows
between 4—digit industries. Consequently for the merged data we construct value
added-based TFP (see the appendix), so the factor shares for that portion of the
empirical work are shares of value added rather than gross output.

To construct equipment’s share we first obtain capital’s share as a residual from
labor’s share (or from labor’s and material’s share of gross output). We then multiply
that by

(r+ 6 ) KGQE/[(r + 63) KR Qf + (r + 63) KEQY)]



for industry 4 in year t, where we set r to be a constant (again, the results are not
sensitive to specifications of variables that vary only over time). For the depreciation
rates, we have obtained 4-digit depreciation rates for equipment and capital from
Wayne Gray. Unfortunately, capital prices are not available at the 4-digit level, so we
obtained 2-digit level prices of structures and equipment from the Commerce
Department’s Fized Reproducible Tangible Wealth yearly, and applied them to the
corresponding 4-digit industries.

Researchers have commonly used the production worker/non-production worker
distinction as a proxy for unskilled versus skilled labor (e.g. Berman, Bound, and
Griliches, 1994, Klenow, 1996, Kremer and Maskin, 1995)). This definition could
actually be better than the education—based one, since it incorporates skills based on
unobservables. On the other hand, the category does include some unskilled workers,
and if the extent of this varied systematically with our explanatory variables there
could be a problem. Moreover, the non—production worker definition arguably does not
control for human capital as well as the education—based definitions. For the merged
data set we are able to examine the correlation between this proxy and the education
level. Since we find a fairly high correlation and similar econometric results, we then
proceed to use the MP data exclusively. This dataset has the advantages of greater

disaggregation (450 4—digit industries) and a longer time period.

3.2. Estimation

The focus of the paper will be on the patterns of growth in H°. To that end, we will
first proceed under the assumption that capital equipment is already measured
accurately in efficiency units, and that there is no growth in unskilled labor’s efficiency,
so that I, = H}' = X; = 1 Vt. This is just to establish a simple benchmark case, which

we will generalize in various directions to see how the initial results hold up. We



rewrite (2.6) as

AlnTFPit:AlnAt—*—OdftAlan"i—Eit (31)

Here €;; has the interpetation of an-idiosyncratic Hicks-neutral technology shock, while
Aln A, (no industry subscript) is an aggregate Hicks-neutral change. If (within a given
time period) skilled labor’s share o, is uncorrelated with €;, then a period-by-period
regression of TFP growth on «f, will yield estimates of Aln H{ and Aln A; for each ¢.
(This of course would be equivalent to a pooled time series—cross section regression in
which both the intercept and the {a%,} are interacted with time dummies.) Thus

Aln A, has the interpretation of the increase in TFP in year ¢ for the hypothetical
industry with zero skilled labor share. Note that by assuming that e; is uncorrelated
with a5, we are essentially labeling as “skilled labor-augmenting” any growth in TFP
that is systematically related in the data to skilled labor’s share. Later we will control
for equipment’s share as well.

Our strategy will bé to use the annual regression results as a guide to direct us
toward patterns or trends in the data, as opposed to interpreting them literally as
estimates of these effects. After presenting various results based on these regressions,
we will use them to indicate a break point in the Samplé (which conveniently will fall
near the middle for the 1958-91 data éet). We will then rely more on lower frequency
results based on industry averages over the subperiods to draw more conclusive results.

For skilled labor’s share we first computed total labor share for each industry
yéarly from the ratio of wage payments to workers to value added, multiplied by the
2—digit level ratio of total compensation to wage payments from the NIPA as described
earlier, and computed each industry’s time average. We then multiplied that by the
ratio of skilled wages to unskilled wages for each year. Thus we assume that total
labor’s share varies across industries but is constant over time (though the results were
not sensitive to this assumption), whereas skilled labor’s share varies across industries

and time. There is in fact considerable growth over time in our measures of skilled



labor’s share.

3.3. Results

We first present results from 1979-1991 annual regressions on the merged data set,
using the education level of 16 years or more as the cutoff for “skilled labor.” The
results we present are Weighted Least Squares estimates using industry employment as
the weight. There are two reasons to weight by some measure of industry size. First, it
is natural to give more weight to larger industries, since in effect they represent sums
of smaller industries. Moreover, to some extent this is a history paper, and we want to
know what happened in the economy, which argues for giving more weight to larger
industries. The second reason is that there appears to be heteroscedasticity in the
data, with the residual variance inversely related to size, as one might expect if the
smallest industries have more noise in their data.

The regression results are provided in Table 2 for six different specifications. The
first two columns give the “base case” specification: Skilled workers are defined as
those with 16 or more years of schooling. The column labeled Aln H® provides the
coefficients on skilled labor’s share o, while the column labeled Aln A has the
coefficients on the constant and 12 year dummies. So the results say, for example, that
an industry with a skilled labor share of 0.03 would have on average seen its TFP
increase by a factor of —0.017 + 0.03 - 1.428 = .026 or about 2.6 percent in 1979. An
industry with a 0.01 share of skilled labor would have seen a decline in TFP growth of
about 0.3 percent.

Since the regression results are a lot to absorb, we also provide some time plots
related to the estimated coefficients. The top panel of Figure 1 is the corresponding
time plot of the estimates of H and A. The lower panel is a plot of the contribution of
H? to total TFP. This was computed by multiplying the estimated growth in H for

each year by that year’s mean of of and accumulating over time with total TFP
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represented by adding to the contribution of H* the estimated growth in A.

The main thing to notice is that there appears to be dramatic growth in f° for
the first two years of the sample, after which it levels off, while there is a decline in A
over those same first years, after which it grows back roughly to where it began. The
t-statistics from the regression show that the initial growth in H° is statistically
significant. Essentially, the regression results are saying that for the first few years of
the sample, there was a significant association between TFP growth and skilled labor’s
share. The decline in A is attributable to the fact that the regression line fitted
through the scatter of TFP growth and skilled labor’s share has a negative intercept in
those first few years—as if to say that an industry with zero or even just sufficiently
low skilled labor’s share would have experienced declines in TFP during those years.

The,remaindef of the results in Table 2 are for different specifications. The results
were actually stronger using 14 years of schooling as the cutoff for the definition of
“skilled,” as well as for the definition of skilled as non—production workers. (The
coefficients are smaller only because the average values of skilled labor’s share under
these alternative definitions are much larger). Note, however, that the results are
considerably weaker for the 12—year cutoff. This is not surprising, since (see the
discussion below) the evidence from wage data suggests that workers with no more
than a high school education experienced a relative decline in wages since 1979. Table
3 shows the simple correlations of four different measures of skilled labor’s share. The
main thing to notice is that the share of non-production worker earnings is strongly
correlated to the education—based measures. So the results are as robust as one would
expect from the alternative definitions of skill.

At the same time, the relatively small number of industries makes the results
somewhat sensitive to outliers. The last two columns of Table 2 provide results after
alternately omitting the computer industry (SIC 3573) and newspaper printing and
publishing (SIC 271). Eliminating the computer industry, which has very high TFP

11



growth and a very high skilled labor share, weakens the results slightly. On the other
hand, the newspaper industry experienced very low (in fact negative) TFP growth
while also having a high share of skilled labor. The results are much stronger if this
industry is left out. (Not reported in the table, if both industries are omitted, the
results are comparable to the base case.)

While there may be grounds for suspecting the newspaper industry data (could it
really have experienced a more than 45 percent decline in TFP over 13 ‘
years?)—especially considering that the industry has been beset by labor unrest—this
sensitivity to outliers is of some concern. More importantly, it is unclear whether the
jump in A that seemed to occur in the first two years of the sample is just an
aberration, a statistical fluke, or part of something bigger. These considerations, plus
the similarity of results using non—production workers’ share, suggest that it would be
reasonable to extend the same econometric exercise to the longer and more
disaggregated dataset provided by the MP, using non—production workers as a proxy
for skilled labor. For this we have, as mentioned earlier, gross output—based TFP, so
the factor shares are relative to gross output.

The results of this exercise are depicted in Figure 2 and Table 4, using the
non—production worker definition of skilled labor. These results buttress the findings
from the shorter time period, but also put them in perspective. They indicate that the
surge in skilled labor—augmenting technical progress was something of a historical
aberration. There is essentially no growth in H® until around 1973. It then grows
dramatically from approximately between 1972 to 1981 (contributing a remarkable
1.81 percent annually to TFP growth for these ten years®, or cumulatively over 18
percent), and then continues at a slower pace after that. Thus the relatively steady
(albeit decelerating) growth of overall productivity (the solid line in the figure)

conceals dramatic underlying shifts. Moreover, it turns out that although the outlier

3This comes from multiplying each year’s estimate of Alog H by that year’s average share
of skilled labor in the sample, and then averaging over the values from 1974 through 1981.
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industries mentioned above still exert a noticeable quantitative impact on the
estimates, the results are qualitatively robust. For example, omitting industry 3573
reduces the size of the large positive coefficients by about 1/3, but they remain
strongly significant. Eliminating the weighting by embloyment has similar effects.
Omitting industry 2711 (newspaper printing and publishing) leads to stronger, but
qualitatively similar results.*

In the same vein, Figure 3 provides weighted scatter diagrams of TFP growth and
non-production worker shares for the years 1977-80, together with the regression line
from Table 3 which support the view that the results are not driven by one or two
outliers. The computer industry (SIC 3573, indicated in the figures) is an outlier in
terms of TFP growth, but is close enough to the middle in its skilled labor share that

it has only a slight influence on the regression results.

3.4. The Role of other Inputs

Clearly this mode of analysis can be extended to incorporate analogous effects through

other inputs. We first relax the assumption that F; = 1 V¢ and estimate the equation
Aln TFPzt =Aln At -+ Ol,ftA In Ht + Ot,?tA In Et + €;. (32)

This can be interpreted as allowing for mismeasurement of quality improvements in
equipment, but does not distinguish between vintages of equipment. Thus if technical
progress were only embodied in new equipment, and industry investment in new
equipment were not proportional to its equipment factor intensity, then we would
possibly miss some growth in E; by using «f,. For example, suppose some technological
development induces low a® industries to undertake large purchases of new equipment

that takes advantage of the new technology, but the new technology happens to be not

“We have also experimented with some corrections for serial correlation in the residuals, but
the results were very similar.
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particularly useful for high o industries. TFP growth would consequently occur only
in the low o industries, and we could mistakenly obtain a negative estimate of Aln F;.

We first add equipment’s share to the regressions from the 1979-91 merged data
set, with the education-based (16 years) measure of skilled labor. We use the NIPA
deﬁator for manufacturing equipment in computing the share, though the results
(which, after all, come from primarily from the cross—sectional variation of the share)
are not sensitive to this. These results are reported in Table 5. They show little
evidence of a substantial role for equipment effects, while the skilled labor effects are
quite similar to those from Table 2. The results were similar when capital’s share was
used instead of equipment’s share.

Results for the 1958-91 period using the non-production worker definition were
similarly inconclusive regarding equipment or capital effects, but the skilled labor
effects are still significant. Figure 4 depicts the estimated H® and F series along with
TFP for the specification in which F multiplies total capital. Similar results were
obtained with using equipment rather than total capital. The effects of H* between
1973 and 1981 are strongly significant. Note that this figure depicts the effects in terms
of their contributions to TFP (as in the bottom panels of Figures 1 and 2). Thus we
estimate an approximate 20 percent increase in TFP through growth in H® during this
eight—-year period. The decline in F after 1973 looks a little strange, but only the drop
in the last four years is significant. It is also somewhat sensitive to outliers and
specification. In general, although none of the various specifications finds any
substantial growth in F, no other clear pattern emerges, whereas the finding of this
1973-81 growth spurt in H* is a common feature of all specifications except in some
cases where industries are not weighted by size. One interpretation of this could be
that although capital improves in quality, the increase in TFP fails to emerge unless
skilled labor is present.

Another pattern in Figure 4 that is also present in Figure 2 is the drop in H® in

14



the few years prior to 1973. Greenwood and Yorukoglu (1996) and Hornstein and
Krusell (1996) have argued that increases in technical change could result in lower
TFP growth. The argument is that the introduction of substantially new technologies
can reduce Iﬁeasured producﬁivity in the short run as workers adapt and learn new
techniques. Indeed, Greenwood—Yorukoglu argue on the basis of aggregate evidence

that precisely this was going on in the early 1970s.

3.5. Embodied Technical Progress

Most stories about skill-biased technical change centef around plant retooling or -
expansion. Dunne, Haltiwanger, and Troske (1996), for example, provide evidence that
changes in non-production workers’ share in plant level data are associated with
changes in the scale of operation of the plants. We therefore also consider a
specification that is designed to capture technical progress that is embodied only in
new capital. In deriving this specification we will lump plant and equipment together
into total capital K (that is, K = K? + K*¢). We can and will do the same exercise
separately for equipment, using industry—specific depreciation rates for equipment and
structures to impute separate series for investment in each type of capital.

Suppose we call K} = K;F;, where K* is the capital stock measured in efficiency

units. Suppose further that
K: = K;—l(]‘ s (S) + It_th_l (33)

where Z; measures investment goods in efficiency units, while I; is the measured
quantity of investment (i.e. K¢y — (1 —6)K;). Now AlnE; = Aln K} — Aln K, by

definition. And we have

‘Aant - “(5+It_1/Kt._1
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AmK; = =6t IaZa/Kiy =8+ 1=

Hence AlnF; = (I;_1/K;_1)(Zi-1/Ei—1 — 1). Consequently, an alternative specification
of (3.2) would be

AInTFP; = AlnA; + oA Hy + of (L1 /Ko 1) (Ze 1 /By — 1) + 6. (3.4)

where o* is capital’s share. (Note that from (3.3) we have K} = Y2 (1 — §) I Z;_,,

which implies that
— Z-?—ozl(l - 6)TIt—TZt—T
7o (1=0)"L—r

Eq

which is a weighted average of current and lagged Zs and hence will always be smaller
than Z; if Z monotonically increases over time.) Thus one could in principle estimate
the same type of equation but replacing of, with o (l;_1/K;;_1) on the right-hand
side. Of course in general one would expect I;;_;/Ki:—1 to be correlated with €, so it
would be necessary to use instrumental variables. We can use factor shares (which we
have assumed to be uncorrelated with the residual) as instruments for o (I;;/ Ky). It
will turn out, however, that estimation of (3.4) will yield very similar results to those
of (3.2). Thus there is little evidence that the embodied/disembodied distinction is
very important for this‘purpose.

The same pattern in H* effects persists in results incorporating embodied progress
in overall capital or in equipment. Figure 5 depicts the contributions to TFP based on
the regression AlnTFFP; = Aln Ay + o3, Aln Hf + dft(Ift_l/K;_l)Aln E; + €, using
ag, af_q, af_;, and of, as instruments. Note that the pattern in E’s contribution to
TFP is different from that depicted in Figure 4 (though it still exhibits a downard
trend), whereas the contribution of H*® is very similar.

Finally, the specification of technology (2.1) or (2.2) permits other analégous

effects as well. Tables 6 and 6a gives some representative results from more general
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specifications (for the cases of disembodied and embodied technical improvements in
capital), just to show that the H® effects are robust. These are based on lumping
structures and equipment together, but similar results were found treating equipment
separately (and assuming technical pfogress is embodied only in equipment). The only
other striking pattern to emerge is the persistent negative H* effects. This could
represent actual diminished quality of unskilled labor during this period, but this
probably deserves more scrutiny.

To summarize these results: We find robust evidence-of a surge in skilled
labor—augmenting technical progress during the period from 1973 to 1981 (as measured
by the extent to which TFP growth is associated with skilled labor’s share across
industries), even after controlling for other factors such as new investment, human
capital (to the extent possible), and outlier industries such as the computer industry.
Somewhat surprisingly, we fail to find evidence that capital—total plant and
equipment, just equipment, or just new plant and/or equipment—plays a significant
role. We will next consider related evidence based on lower frequency data (i.e. time
averages of the panel data considered above, broken into pre— and post-1973

subperiods), along with independent evidence based on aggregate time series.

3.6. Low Frequency Implications and Evidence

It is worth pointing out that the presence of skilled labor-augmenting technical
progress is not immediately apparent in the MP data.® As Klenow (1996) points ou‘n‘
(in a study that uses essentially the same MP data as this study), there is no
correlation between average industry TFP growth and skilled labor’s share. How can
this be so? Even though the results suggest that this phenomenon was to some extent

a historical aberration, it should still be evident in a cross-section study such as

>Table 3 suggests that there is in the merged data set, but in fact the positive correlations
with TFP are sensitive to the treatment of outliers.

17



Klenow’s if the data include that period, since although skilled labor’s share varies, the
high-skill industries tend to be the same over time. It turns out that there are two
explanations. First, as mentioned earlier, our results not as strong without the
weighting by industry size. The data from small industries appear to be noisier, so a
simple cross—sectional correlation that fails to take this into account will tend toward
zero. Second, controlling for equipment’s share actually increases the correlation
between skilled labor’s share and TFP growth. (Rather surprisingly, equipment’s share
and non-production workers’ share are negatively correlated in the cross—section.)

To document this we next provide results based on a cross section of industry
averages. Table 7 provides regression results based on (3.2) modified to include
equipment effects, i.e.:

TFP, = A+ aSH + &F + ¢ (3.5)

from the cross—section of 450 industry averages over 1959-73 and 1974-91 subsamples,

LN

~ where the refers to the average growth rate of the underlying variable, and the “—"
over the shares indicate industry averages over the same period. Both OLS and WLS
results are provided, with and without equipment’s share. The unweighted regression
without equipment’s share reproduces Klenow’s negative result, but the others show
that both weighting by industry size and controlling for equipment’s share increases
the estimated effect of skilled labor’s share. The WLS estimates of H for the 1974-91
period range from 0.059 to 0.197, which correspond to a range of contributions to TFP
of 0.70 percent up to 2.3 percent annually (the weighted average share of
non-production workers in gross output is 0.119), compared to a weighted average
overall TFP growth rate in the sample of 0.80 percent. Again the estimates of F
appear to be sensitive to the specification, while there are again persistent negative

effects from production—workers share. But the main thing to notice is the clear

difference between the two subsamples with regard to the estimates of He.
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3.7. Aggregate Time Series Evidence

It turns out that with a little more structure on technology we can get evidence on the
average growth rates of H°, E, and A from the joint behavior of the growth rates of
outputs, inputs and factor prices in aggregate data. Suppose the production function

for industry 7 is CES:

yit = Aulo? KB + of(KGE) ™ + af(HN3) ™ + o N¥' ™' |79, (3.6)

where ¥;af =1 and § > 0. Note that industries may differ in the share parameters o,

but they are assumed to have the substitution elasticity parameter 6. From the

first—order conditions we have

P+ 0@ — KN +(1-0)A =Qr,
P+0(i—K)+(1—0 = Q
B (@ Az) ( )(A E) Q A (37)
P+ 0(5 — N7) + (1 - 0)(A+ H?) =W*+ I

P4+ 60 — N*) +(1—6)A :v‘vu.

Cobb-Douglas production is the special case in which § = 1. In that case we obviously
cannot learn anything about F and H* from aggregate data. But otherwise we can
look at the aggregate average growth rates of these variables and solve for A, H*, E,
and 6. We do this using two different (though overlapping) data sources. First we use
the data from the MP database, which include value added, the capital stocks, and
earnings for production and non-production workers (modified as before to factor in
non-wage compensation). To this we add the NIPA deflators for manufacturing
equipment and structures, and the producer price index. Also, because there is a
general consensus that quality changes in equipment have been poorly captured by the
- NIPA measures (see Gordon, 1990, Greenwood, Hercowitz, and Krusell, 1995), we also
consider an adjustment to K* based on Gordon’s (1990) price index.

The second data set is entirely from the NIPA: We use aggregate manufacturing
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output, production worker earnings (computed from employment, weekly hours, and
hourly earnings), total labor compensation, total labor wage and salary payments,
total employment (from which we subtract production worker employment to get
non—production worker employment). We impute a compensation rate for both types
of workers, under the assumption that the ratio of total compensation to wage and
salary payments is the same. It probably is not, but this is not so important for
working with growth rates. We do want to capture the extra growth in labor
compensation that comes from growth in fringe benefits relative to wage and salaries.
We would only be off in this calculation if ‘fringe benefits relative to wages grew by
more for one type of worker than the other.

We compute A, H*, E, and 6 for the 1959-91 period, and also separately for the
1959-73 and 1974-91 periods, for each of the two datasets. We want to see whether
the “regime shift” evident from the disaggregated data—that in the earlier period H*
was if anything negative, while in the second it is strongly positive—also shows up in
aggregate behavior.

The results are given in Table 8. Regarding He they are remarkably consistent
with the findings from the disaggregated data, considering that they are based on an
entirely different computation. These results make no use of cross—sectional variation
or of factor shares, but are based entirely on the joint behavior of aggregate average
growth rates of inputs, outputs, and factor prices. For example, H* is measured from
the growth of N°/N* relative to the growth of the relative wage WSH*/W". The
estimate is higher in the later period because the growth in the relative inputs
increased relative to the growth in relative wages. Though obviously there are no
standard errors to this exercise, both datasets show a clear regime shift pre- and
post—1973 era. Just taking the average of the two estimates, A goes from 1.876 to
—0.205 percent, while H* goes from —0.076 to 1.70 percent, and E goes from —1.474
to 2.469 percent (or from —0.194 to 5.195 percent by the alternative measure). The
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estimates of 8 range from approximately 0.1-0.4, which represents a relatively high
degree of substitutability between factors. While this is a wide range, and the
estimates do not seem especially stable across the different time periods, the
qualitative results are not very sensitive to the choice of 6. °

The only inconsistency between these findings and the cross—section findings is the
evidence of growth in E as well as in H®. But this is consistent with the Table 7
cross-section regressions, and provides further confirmation of significant equipment
effects only in low frequency data. Thus the behavior of the growth rates of inputs,
output, and prices in aggregate manufacturing strikingly confirm the evidence from
disaggregated data that beginning in around 1972 technical progress began to be mére
selective in its impact, increasing the relative productivity of skilled workers and the
efficiency of equipment, and consequently inéreasing the productivity of industries

relatively intensive in those factors.

3.8. Patterns in Wage Rates and Employment

Katz and Murphy (1992) document large increases in the relative wages of more
educated workers, particularly those with relatively low experience, over the period
from 1963 to 1987. For those with one to five years of experience, wages of
college—educated workers rose by 12.2 percent relative to high—school dropouts.
Breaking down this time period into shorter intervals, they note that between 1963 and
1971 the relative wages stayed fairly even. From 1971-1979 the college education
premium actually declined (by 12.8 percent for the low experience group), a fact they
attribute to a large supply increése. But from 1979-1987 the premium jumped

dramatically, by 26.6 percent for the low experience group. Over this same period the

8To get a sense of the contribution of H and E in the later period, note that average pro-
duction worker’s share in the ASM data from 1974 to 1991 is 0.217, while equipment’s average
share is 0.258. Hence the contributions would be 0.28 and 0.97 percent respectively. The corre-
sponding calculation for the NIPA data are .85 and .22 percent for H and E respectively. Both
estimates of £ would of course be larger with the Gordon—based measure of Ke.
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premium of college over high school-educated actually rose by 30.6 percent.”

Murphy and Welch (1992) also document this phenomenon of “skill-biased
technical change,” and their time breakdowns correspond more closely to the periods
highlighted in our analysis. They show that the hoﬁrly Wagés of college graduates
relative to high school graduates was 1.52 in 1969, 1.39 in 1974, 1.30 in 1979, 1.63 in
1984, and 1.74 in 1989 for workers with one to five years of experience. Thus in the five
years from 1979 to 1984 the premium rose by over 25 percent. Again, the large increase
in young college educated workers in the 1969-79 period (presumably due in part to
the baby boom and in part to the incentives spawned by the Vietnam War) could have
swamped any increase in demand for them. But the overall increase in this premium of
17.3 percent from 1974-1984 in spite of the large increases in supply suggests that
there was a substantial increase in the relative demand for educated workers.

Other work in this area focuses on employment patterns. Berman, Bound, and
Griliches (1994) document a sustained increase in the share of non—production workers
in the wage bill of U.S. manufacturing during the period from 1959-89, with an
acceleration after 1979. They also show that much of this increase occured within
industries, and therefore does not represent the effect of shifts in product demands.
Dunn, Haltiwanger, and Troske (1996) carry this last point one step further and show
that the bulk of the increases in non—production workers’ share is within plants. They
conclude that “individual plants have fundamentally changed the way they produce
goods in terms of the mix of workers. . . .”

Although the model presented earlier does not have any automatic implications
for patterns of relative wage rates and employment of skilled and unskilled workers,

from the system 3.7 we can illuminate the relationship between skilled

labor-augmenting technical progress and skill-biased technical change. From the

"Katz and Murphy also document dramatic increases in relative wages of more experienced
workers within the lower education groups. Our schooling—based measure of skilled labor’s share
overlooks the contribution of experience as a substitute for schooling.
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equations for skilled and unskilled labor we have

—0)
6

N N 1 N 1 - N -
for within—industry changes in relative labor demand. In terms of the change in skilled

labor’s share, we get

87— i (4 =iy == S0 e ]

The term W* — W* would be positive except in the extreme case that the equilibrium
skill premium increases one—for-one With H°. Thus growth in H* corresponds to
skill-biased technical change only to the extent that 6 < 1, i.e. that the elasticity of
substitution across factors is greater than one. So growth in H* is certainly capable of
causing growth in the skill. premium, and the small values for 6 found in Table 8 are
consistent with this explanation.

To summarize: Provided the elasticity of substitution is sufficiently greater than
one, our finding that H® grew substantially (and without precedent) during the period
1973-1982 is broadly consistent with the the above-referenced literature’s finding of
skill-biased technical progress, though the acceleration in H* may precede somewhat
the acceleration of the growth in non—production workers’ share. The patterns in the
skilled wage premium also and match up well with the regression results that indicate
skilled labor-related growth in TFP during the roughly the same time period of
approximately 25 percent.

Regarding the precise timing of these various shifts: the fact that the TFP effects
appear to have preceded the acceleration in skilled labor’s share documented by
Berman et al. would suggest a story in which skilled labor-augmenting technical
progress does not immediately translate into increases in skilled labor’s share, but does

so with a lag. This could result from long—term labor contracts, the need to retool
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plants, or other types of adjustment costs.

4. Conclusions

This paper has provided a variety of evidence of major sectoral shifts in productivity
growth during the 1970s and 80s. It documents a surge in productivity growth favoring
industries with high shares of skilled labor that began around 1973 and continued for
at least eight to ten years. The effects are present even after controlling for analogous
capital equipment effects. These findings complement earlier studies of wage and
employment patterns that find that the demand for skilled workers rose sharply
beginning in the early seventies: Provided the elasticity of substitution across factors is
greater than one, our interpretation of these patterns in TFP growth as skilled
labor—-augmenting technical progress is consistent with—and arguably accounts
for—skill-biased technical progress. The more recent evidence suggests that the pace
of skilled labor— and equipment—augmenting technical progress has slowed, which
would suggest a settling of the distribution of income.

The timing of the surge in skilled labor—augmenting technical progress also
coincides with Greenwood and Yorukoglu’s timing of the “watershed” that they argue
initiated both the rise in income inequality and the slowdown of aggregate
productivity. They provide evidence of large increases in the rate of investment in
“information technology” (along with steep price declines in new equipment). They
provide a story for why the surge occurred: An acceleration of technical progress in
information technology (manifesting itself in lower equipment prices). They suggest
that the new technology requires investment in learning—a task performed only by
skilled workers—which causes measured productivity to fall initially. We would
embellish that story with the feature that industries with larger shares of skilled labor
can more quickly absorb the new technology and translate it into higher productivity

(in their model industries do not differ in that dimension).
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Table 1: SIC Industry Codes for Merged Dataset

Ind. || SIC Codes Ind. || SIC Codes Ind. || SIC Codes

1 201 24 | 281, 286, 289 47 | 346

2 202 25 | 282 48 351

3 203 26 | 283 49 | 352

4 205 27 | 284 50 | 353

5 206, 207,209 | 28 | 285 51 354

6 208 29 | 287 52 355, 356, 358, 359
7 210 30 | 291 53 | 3574, 3576, 3579
8 221-224, 228 | 31 | 295, 299 54 | 3573

9 225 32 | 301 55 361, 362, 364, 367, 369
10 226 33 | 302-304, 306 56 363

11 227 34 | 307 57 | 365, 366

12 229 35 311 58 371

13 231-237 36 | 312-317, 319 59 | 372

14 239 37 | 321, 322, 323 60 | 373

15 241 38 | 324, 327 61 374

16 242, 243 39 1325 62 375, 376, 379

17 244, 249 40 | 326 63 | 381, 382

18 25 41 | 328, 329 64 | 383-385

19 261-263, 266 | 42 | 33 65 386

20 264 43 | 341, 343, 347-349 | 66 387

21 265 44 | 342 67 |39

22 271 45 | 344

23 272-279 46 | 345
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Table 2: Regression Results, Merged Dataset

Skill Definition

16 years 14 years 12 years
Year AlogH AlogA AlogH AlogA AlogH  AlogA
const -0.022 -0.052 -0.071
(0.017) (0.024) (0.054)
79 1.428 0.005 0.825 0.014 0.113 0.037
(0.776)  (0.022) (0.312) (0.030) (0.111) (0.068)
80 3.636 -0.078 1.237 -0.052 0.132  -0.008
(0.747)  (0.023) (0.278) (0.030) (0.111) (0.068)
81 0.601 0.010 0.090 0.046 -0.159  0.130
(0.680) (0.023) (0.325) (0.032) (0.116) (0.070)
82  -0.051 0004 -0464 0.063 -0.394 0.200
(0.612) (0.023) (0.273) (0.031) (0.117) (0.070)
83 0.786 0.032 0.594 0.041 0.063 0.076
(0.563) (0.023) (0.266) (0.031) (0.119) (0.071)
84 -0.168 0.073 -0.020 0.100 -0.079  0.149
(0.529)  (0.022) (0.274) (0.031) (0.123) (0.073)
85 0.829 0.006 0465 0.021 - 0.094 0.040
(0.515) (0.024) (0.244) (0.032) (0.123) (0.074)
8  -0.064 0.025 0.017 0.052 -0.082 0.106
(0.567) (0.025) (0.235) (0.032) (0.127) (0.075)
87  -0.657 0.115 -0.224 0.144 -0.223  0.235
(0.464) (0.023) (0.236) (0.032) (0.124) (0.075)
88 -0.982 0.072 -0.172 0.087 0.081 0.059
(0.464) (0.023) (0.248) (0.032) (0.121) (0.074)
89  -0498 0.031 -0.065 0.052 -0.012 0.070
(0.439) (0.023) (0.222) (0.032) (0.121) (0.075)
90 0.615 0.001 0315 0.022  0.059 0.044
(0.433) (0.023) (0.216) (0.032) (0.122) (0.075)
91 0.219 0.389 0.134
(0.427) (0.232) (0.127)
R? =0.187 R%? =0.189 R% =0.168



Table 2 (cont.): Regression Results, Merged Dataset

Non-prod. workers

Omitting 3573

Omitting 271

Year AlogH AlogA AlogH AlogA AlogH AlogA
const,. -0.049 -0.017 -0.043
(0.029) (0.014) (0.019)
79 0.388 -0.013 0.561 0.011 2.978 0.004
(0.141) {0.039) (0.644) (0.018) (1.032) (0.026)
80 0.705 -0.116 2.182 -0.062 4.141  -0.065
(0.138) (0.040) (0.626) (0.019) (0.792) (0.025)
81 0.096 0.030 -0.467 0.021 0.806 0.028
(0.136) (0.040) (0.576) (0.019) (0.754) (0.025)
82 -0.173 0.065 -0.656 0.009 0.085 0.023
(0.138) (0.041) (0.530) (0.019)  (0.709) (0.025)
83 -0.118 0.102 0.020 0.039 1.120 0.047
(0.133) (0.041) (0.468) (0.019) (0.607) (0.025)
84  -0.077 0.112 -1.320 0.087 0.013 0.090
(0.129) (0.040) (0.450) (0.018) (0.613) (0.025)
8 - 0.183 0.017 0.053 0.016 1.283 0.015
(0.126) (0.040) (0.435) (0.020) (0.568) (0.026)
86 0.024 0.045 -0.577 0.029 0.024 0.044
(0.125) (0.041) (0.467)  (0.020) (0.644) (0.027)
87 -0.115 0.147 -1.096 0.118 -0.508  0.133
(0.121) (0.040) (0.382) (0.019) (0.492) (0.025)
88  -0.174 0.107 -0.953 0.066 -0.867  0.090
(0.119) (0.040) (0.388) (0.019)  (0.530) (0.025)
89  -0.132 0.072 -0.660 0.029 -0.405  0.050
(0.118) (0.040) (0.361) (0.019) (0.473) (0.025)
90 0.247 -0.007 0.414 -0.000 1.197 0.007
(0.119) (0.040) (0.357)  (0.019) (0.479) (0.025)
91 0.156 0.012 0.948
(0.126) (0.357) (0.517)
R? =0.193 R? = 0.244 R? =0.205



Table 3: Sample Statistics on Measures of

Skilled Labor Share and TFP Growth

a(16) «(14) «(12) o(NP) ATFP(%)
Sample Mean 0.024 0.071 0.376 0.197 '1.211
Corr. with «(16) | 1.000 0.959 0.839 0919  0.236
Corr. with TFP 0.182 0.208 0.120 0.174 1.000

a(n) = skilled worker share based on n yrs. of schooling,

or on non-production workers (N P). Statistics are employment-weighted.



Table 4: Regression Results with MP Dataset, 1959-91

Year AlnH AlnA  Year AlnH AlnA
C. -0.017 75 0.160 -0.041
(0.004) (0.035)  (0.006)
59 -0.261 0.074 76 -0.033 0.048
(0.040) (0.006) (0.034) (0.006)
60 -0.019 0.011 77 0.172 0.021
(0.038) (0.006) (0.032)  (0.006)
61 0.103 0.010 78 0.106 0.016
(0.036) (0.006) (0.031) (0.006)
62 -0.022 0.047 79 0.259 -0.004
(0.035) (0.006) (0.029)  (0.006)
63 0.062  0.037 80 0.422 -0.037
(0.034) (0.006) (0.029) (0.006)
64 -0.033 0.037 81 0.123 0.004
(0.035) (0.006) (0.029)  (0.006)
65 -0.024 0.044 82 -0.014 0.010
(0.033) (0.006) (0.029)  (0.006)
66 0.086  0.010 83 -0.045 0.044
(0.032) (0.006) (0.028)  (0.006)
67 0.062 0.011 84 -0.043 0.047
(0.030) (0.006) (0.026) (0.006)
68 -0.052 0.041 85 0.031 0.025
(0.029) (0.006) (0.026) (0.006)
69 0.073 0.011 86 0.037 0.013
(0.029) (0.006) (0.025) (0.006)
70 -0.090 0.001 87 0.018 0.053
(0.031) (0.006) (0.025)  (0.006)
71 -0.262  0.063 88 -0.116 0.034
(0.034) (0.006) (0.024)  (0.006)
72 0.144  0.020 89 -0.077 0.024
(0.035) (0.006) (0.024)  (0.006)
73  -0.025 0.050 90 -0.018 0.016
{0.034) (0.006) (0.024)  (0.006)
74 0.230 -0.013 91 0.053
(0.034) (0.006) (0.026)

R? =0.170



Table 5: Regression Results with Equipment Share, Merged Dataset

Year AlnA AlnH?® AlnE
79  0.0140 1.3761  -0.0944
(0.0423) (0.7760) (0.1219)

80 0.0119 3.2534 -0.3289
(0.0459) (0.7570) (0.1264)

81 -0.0153 0.6071  0.0096
(0.0444) (0.6788) (0.1251)

82 -0.1093 -0.0380 0.2781
(0.0450) (0.6089) (0.1290)

83 -0.0489 0.7646  0.1820
(0.0452) (0.5604) (0.1306)

84 0.0033 -0.1658  0.1442
(0.0443) (0.5262) (0.1265)

85 0.0342 07801 -0.1507
(0.0468) (0.5139) (0.1280)

86 0.0508 -0.0712 -0.1410
(0.0470) (0.5639) (0.1290)

87 0.0492 -0.6537 0.1285
(0.0442) (0.4613) (0.1218)

88 -0.0140 -0.9775 0.1876
(0.0435) (0.4611) (0.1193)

89 -0.0181 -0.5313  0.0828
(0.0418) (0.4397) (0.1180)

90 0.0120  0.6280 -0.0976
(0.0429) (0.4304) (0.1162)

91 0.0172 02093 -0.1113
(0.0453) (0.4255) (0.1190)

R? =0.2096



Table 6: Regression Results with Total Capital, Disembodied Capital Improvement

AInTFPy = AlnA; + of, AlnH; + o AlnHY + of, AlnE;

Year AlnA AlnH®  AlnHY AlnE Year AlnA AlnH® AlnH* AlnE
59 0.0253 -0.3362 0.0437  0.1497 76  0.0770  0.0006 -0.2058 -0.0576
(0.0122) (0.0554) (0.0451) (0.0493) (0.0096) (0.0339) (0.0343) (0.0317)
60  0.0143 0.0042 -0.1036 -0.0186 77 -0.0125 0.1726  -0.0556  0.0024
(0.0096) (0.0430) (0.0359) (0.0389) (0.0098) (0.0332) (0.0351) (0.0318)
61 -0.0091 0.1073 0.0237 -0.0154 78 0.0314 0.1299 -0.1418 -0.0431
(0.0072) (0.0285) (0.0270) (0.0281) (0.0105) (0.0345) (0.0371) (0.0342)
62 0.0440 -0.0012 -0.0397 -0.0443 79  0.0428 0.3252 -0.2169 -0.1510
(0.0058) (0.0228) (0.0216) (0.0227) (0.0104) (0.0335) (0.0361) (0.0342)
63  0.0334 0.0893 -0.0047 -0.0749 80 0.0321 0.5094 -0.2545 -0.2324
(0.0088) (0.0319) (0.0327) (0.0335) (0.0146) (0.0448) (0.0493) (0.0460)
64 0.0151 -0.0463 -0.0032 0.0307 81 0.0320 0.1278 -0.2037 -0.0457
(0.0043) (0.0167) (0.0162) (0.0166) {(0.0125) (0.0371) (0.0419) (0.0394)
65 0.0261 -0.0332 -0.0185 0.0256 82 0.0074 -0.0365 -0.1171 0.0368
(0.0053) (0.0203) (0.0197) (0.0205) (0.0123) (0.0341) (0.0408) (0.0375)
66 -0.0069  0.0881 0.0016  -0.0064 83 0.1378 -0.0255 -0.4098 -0.1970
(0.0047) (0.0177) (0.0174) (0.0179) (0.0135) (0.0351) (0.0453) (0.0409)
67 -0.0399 0.0254  0.0968  0.0921 84 0.0607 -0.0758 -0.2135 0.0398
(0.0079) (0.0273) (0.0286) (0.0286) (0.0152) (0.0386) (0.0507) (0.0471)
68 0.0676 -0.0265 -0.1928 -0.0573 85 0.1104 0.0586 -0.3198 -0.2358
(0.0075) (0.0247) (0.0272) (0.0267) (0.0128) (0.0309) (0.0425) (0.0393)
69 -0.0024 0.0591 -0.0689 0.0480 86 0.0287  0.0218 -0.1660 . -0.0146
(0.0054) (0.0179) (0.0196) (0.0190) (0.0117) (0.0270) (0.0397) (0.0350)
70 -0.0272 -0.1187 -0.0163 0.0818 87 0.0679 -0.0030 -0.1764 0.0019
(0.0079) (0.0271) (0.0291) (0.0271) (0.0116) (0.0265) (0.0391) (0.0345)
71 0.0636 -0.2659 -0.1440 0.0349 88 0.0425 -0.0796 0.0005 -0.1367
(0.0079) (0.0291) (0.0300) (0.0277) (0.0107) (0.0239) (0.0356) (0.0313)
72 -0.0460 0.0102 0.0035  0.2867 89 0.0333 -0.0659 -0.0617 -0.0802
(0.0113) (0.0424) (0.0416) (0.0387) (0.0086) (0.0190) (0.0285) (0.0248)
73 0.0599 0.0340 -0.0405 -0.1176 90  0.0503 0.0168  -0.0945 -0.1797
(0.0100) (0.0372) (0.0364) (0.0341) (0.0102) (0.0231) (0.0343) (0.0296)
74  0.0358 0.3052  -0.2547 -0.1272 91  0.0699 0.1161 -0.1646 -0.3015
(0.0134) (0.0499) (0.0481) (0.0452) (0.0097) (0.0225) (0.0329) (0.0284)
75 -0.0236 0.1843 -0.1682 -0.0320 |
(0.0141) (0.0514) (0.0508) (0.0465)



Table 6a: Regression Results, Embodied Capital Improvement

AInTFPy = Alnd, + of, AlnH + o AlnHP + of, (Ii—1 | Kit—1) AlnE;

Year AlnA ~ AlnH® AlnH" AlnE Year AlnA AlnH® AlnHY* AlnE
60 0.0267 0.0332 -0.0979 -1.2514 76  0.0704 -0.0192 -0.1926 -0.3938
(0.0079) (0.0382) (0.0347) (0.2777) (0.0084) (0.0311) (0.0336) (0.3474)
61 -0.00561 0.1191 0.0254 -0.6302 77 0.0116 0.1708 -0.0549 0.0811
(0.0063) (0.0275) (0.0273) (0.2515) {0.0091) (0.0322) (0.0345) (0.3466)
62 0.0397 -0.0092 -0.0399 -0.2829 78 0.0411  0.1477 -0.1507 -1.0510
(0.0051) (0.0223) (0.0216) (0.2227) (0.0106) (0.0350) (0.0381) (0.3981)
63 0.0384  0.1008 0.0117  -1.7158 79  0.0372  0.3570 -0.2004 -1.7139
(0.0079) (0.0311) (0.0335) (0.3634) (0.0101) (0.0397) (0.0383) (0.4001)
64 0.0220 -0.0301 -0.0032 -0.1398 80 0.0131 0.5961 -0.2436 -2.2205
(0.0040) (0.0155) (0.0161) (0.1752) (0.0134) (0.0598) (0.0530) (0.4974)
65 0.0280 -0.0270 -0.0210 0.1689 81 0.0527 0.2424 -0.2464 -1.8390
(0.0048) (0.0192) (0.0199) (0.1829) (0.0116) (0.0463) (0.0449) (0.3999)
66 -0.0039  0.0962 0.0051 -0.2680 82 0.0203 0.0045 -0.1377 -0.3297
(0.0045) (0.0179) (0.0177) (0.1793) (0.0102) (0.0472) (0.0420) (0.3808)
67 -0.0223  0.0602 0.0931 -0.0731 83 0.0890 -0.1213 -0.3502 0.3910
(0.0073) (0.0281) (0.0291) (0.2752) (0.0102) (0.0526) (0.0465) (0.3796)
68  0.0721 0.0135 -0.1675 -1.3377 84  0.0561 -0.2288 -0.1802 1.3382
(0.0066) (0.0268) (0.0278) (0.3017) (0.0109) (0.0564) (0.0493) (0.3597)
69  0.0095 0.0865 -0.0661 -0.2964 85 0.0548 -0.0050 -0.2625 0.0476
(0.0046) (0.0185) (0.0199) (0.1982) (0.0103) (0.0517) (0.0446) (0.3604)
70 -0.0138 -0.0913 -0.0239 0.1429 86 0.0161 -0.0557 -0.1442 0.8138
(0.0072) (0.0258) (0.0293) (0.2837) (0.0092) (0.0425) (0.0398) (0.3696)
71 0.0761 -0.2330 -0.1399 -0.6497 87 0.0680 -0.0053 -0.1764 0.0332
(0.0065) (0.0274) (0.0298) (0.2908) (0.0090) (0.0385) (0.0383) (0.3632)
72 -0.0297 0.1009 -0.0821 3.3897 88 0.0144 -0.0670 0.0282 -0.5368
(0.0097) (0.0388) (0.0418) (0.4094) (0.0081) (0.0332) (0.0356) (0.2976)
73 0.0618 0.0044  -0.0235 -1.5484 89 0.0191 -0.0623 -0.0467 -0.3809
(0.0087) (0.0328) (0.0349) (0.3042) (0.0070) (0.0223) (0.0282) (0.2354)
74  0.0380 0.2734 -0.2390 -1.5872 90 0.0332 0.0712 -0.0807 -1.7982
(0.0117) (0.0442) (0.0463) (0.3806) (0.0083) (0.0266) (0.0337) (0.2788)
75 -0.0071 0.1817 -0.1630 -1.4663 91 0.0519 0.1345 -0.1714 -2.5152
(0.0128) (0.0467) (0.0503) (0.4645) (0.0094) (0.0248) (0.0352) (0.2730)



Table 8: Steady State Computation

of Technology Factors (percent growth rates)

NIPA 59-73 NIPA '74-91 | NIPA ’59-91
9 0.198 0.080 0.113
A 2.372 0.451 1.387
q 0575 2.102 0.665
E -2.059 1.162 -0.155
E* -1.439 1.789 0.491

ASM ’59-73 ASM ’74-91 | ASM ’59-91
9 0.436 0.400 0.297
A 1.381 -0.861 0.613
H 0.423 1.303 0.686
E -0.888 3.775 0.676
E* 1.051 8.602 2.779

* Computed assuming quality improvements in K© based on Gordon.
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Appendix: Constructing Value Added TFP

In aggregating to the CPS industry classification, it is necessary to use TFP based
on value added rather than on gross output, because gross output does not aggregate
simply, and there is not enough information in the NBER’s productivity database to
aggregate properly. The main problem in constructing value added TFP on the basis
of the available data is to convert nominal value added to real. Unfortunately the
standard “double deflation” method leads to negative numbers in too many instances,
as the computed real cost of materials exceeds the real value of gross output (at least if
one uses the deflator for nominal shipments to deflate gross output).

Instead we construct value added TFP directly from gross output TFP as follows.
For the sake of exposition, we let gross output Y be a constant returns to scale
function of capital K, labor N, and materials M, and we will suppress the industry
and time subscripts. Nominal gross output is PY’, and the nominal cost of materials is
QM. We have ‘

TFPg =Y — (agK + ayN + o M)

where «; is j’s factor share in gross output and ~ denotes a growth rate. Also we have
TFPy =V — (yxK +yvN)

where V =Y — M and ; is factor j’s share in value added.
Our key assumption will be that M = ¢Y, and we will compute ¢ for each

industry from its average value of M/Y . Since we know that v;(1 — aps) = «;, we have

1-—0&M

1-¢

Tva(].—O{M)g (?—(ﬁM)—(OzKK-{—OéNN).
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Table 7: Cross—Section Results, 1959-73

TFP, = A+atH* +arH* +asE +anX

A
OLS  0.0079
(0.0016)
WLS  0.0131
(0.0009)
WLS  0.0209
(0.0017)
WLS  0.0195

(equip.) (0.0020)

WLS  0.0165
(total) (0.0021)

WLS 0.1016
(equip.) (0.0017)

OLS  0.0037
(0.0016)
WLS  -0.0030
(0.0029)
WLS  0.0266
(0.0052)
WLS  0.0461

(equip.) (0.0070)

WLS  0.0498
(total) (0.0072)

WLS  -0.0546
(equip.) (0.0528)

H;
0.0197
(0.0169)

-0.0137
(0.0077)

-0.0100
(0.0075)

-0.0145
(0.0085)

-0.0202
(0.0081)

-0.0979
(0.0192)

-0.0165
(0.0148)

0.0690
(0.0195)

0.0590
(0.0187)

0.0897
(0.0198)

0.0926
(0.0081)

0.1969

(0.0595)

H,

-0.0444
(0.0081)

-0.0448
(0.0081)

-0.0433
(0.0080)

-0.1234
(0.0182)

1974-91

-0.1644
(0.0248)

-0.1781
(0.0246)

-0.1913
(0.0250)

-0.0872
(0.0535)

0.0160
(0.0135)

0.0249
(0.0079)

-0.1143
(0.0302)

-0.1466
(0.0358)

-0.1017
(0.0224)

0.0047
(0.0868)

-0.0856
(0.0178)

0.1043
(0.0546)

RZ
0.0030

0.4653
0.4992
0.5007
0.5100

0.5254

0.0028
0.0567
0.1413
0.1726
0.1793

0.1793



Consequently we have

1—0&M

g (7 - 6)

TFPy(1 — ay) 2 TFPg — (Y — oy M) +

or
1 1 1 - -

TFPy~ ——  _TFP; — m(ff — o M) + ﬂ(Y — QM.
Here everything varies both over industry and time, except for ¢, which only varies
over industries. This was constructed at the 4-digit level and then aggregated
weighting by Y — ¢ M.

We should stress that the results were not sensitive to alternative methods of

dealing with this problem. Various constructs of T'F' Py, were all highly correlated with
each other, and with T'F' Pg. (The correlation of this construct with 7TF Py is 0.93.)
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Figure 2: Components of TFP, MP Dataset
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Figure 4: Contributions of Skilled Labor and Capital to TFP Growth
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Figure 5: Contributions of Skilled Labor with Embodied Technical Change in Equipment
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