Rochester Center for
Economic Research

On the Axiomatic Method Part I: A User’s Guide

Thomson, William

Working Paper No. 445
November 1997

University of

Rochester




On the Axiomatic Method
Part I: A User’s Guide

William Thomson

Rochester Center for Economic Research
Working Paper No. 445

November 1997






On the Axiomatic Method
Part I: A User’s Guide

William Thomson*

November 1997

*Economics department. University of Rochester, Rochester, NY 14627. E-mail:
wth2Qdbi.cc.rochester.edu. Support from NSF, under grant SES 9212557, and the
comments of Marc Fleurbaey, Bettina Klaus, Yves Sprumont, and John Weymark are
gratefully acknowledged. I am particularly endebted to Walter Bossert, Laurence Kranich,
and James Schummer for their detailed remarks.






Abstract

This is Part I of a study of the axiomatic method and its recent
applications to game theory and resource allocation. Part I is a user’s
guide. It describes the components of an axiomatic study, discusses
the logical and conceptual independence of the axioms in a character-
ization, exposes mistakes that are often made in the formulation of
axioms, and explain how each axiomatic study should be seen from
the perspective of the axiomatic program. It closes with a schematic
representation of this program. Part II discusses the scope of the ax-
iomatic method and briefly presents a number of models where its
application have been particularly successful, with emphasis on devel-
opments that have occured in the last few years.






Contents

2.1
2.2

3.1
3.2
3.3

3.4

4.1

4.2
4.3
4.4

4.5

Introduction

Basic set-up: problems and solutions

Problems . . . . . . . . . e e e e e e
Solutions . . . . . v o e e e e e e e e e

The components of an axiomatic study

The objective of an axiomatic study should not in general be
the characterization of a particular solution. . . . . . . .. ..
The objective of characterizing a particular solution is legiti-
mate in some situations . . . ... ..o Lo L
The characterization of a unique solution is not necessarily
more useful than the characterization of a family of solutions .
For practical reasons, once the objectives of an axiomatic
study have been stated, the analysis itself may have to be-
ginfromsolutions . . . . .. ... ... .. ... L.

Independence of axioms in characterizations

In a characterization theorem, the axioms should be logically

independent . . ... ... ... .. .. e e e e e e

4.1.1 A first reason to establish independence is to ensure
that our results are stated in the most general form . .

4.1.2 A second, practical, reason to establish independence
of the axioms is to discover more general results .

'4.1.3 How to establish logical independence . . . . . . .. ..

In a characterization, the axioms should express conceptually
distinct ideas . . . . . .. . ... L. Lo o
In a characterization, the axioms should be conceptually com-
patible . . . .. ..o oL oL e e e e e e
Evaluating characterizations by the number of axioms on
which they are based . . . . ... ... ... ... ... ...,
A logical issue: how enlarging or restricting the domain affects
a characterization . . . .. .. ... ... ... ... .. ...

5 Common mistakes in the formulation of axioms

11

12

12

13

13

14
14

16

19

20

22

26



5.1 Axioms tailored to a particular solution and lacking general

appeal . . ... ..o o oo e e e e e 27

5.2 Technical axioms . . . ... ... ... ... .. ........ 27

6 Axiomatic studies and the axiomatic “program” 28
6.1 The axiomaticprogram . . . . . . ... .. ... ... 28
6.2 Establishing priorities between axioms . . . ... ... .. .. 29
6.3 Formulating discrete weakenings of axioms . . . . . . ... .. 29
6.4 Formulating parameterizations of axioms . . . . ... ... .. 30

6.5 Establishing functional relations between parameterized axioms 30

7 A schematic representation of the objectives of the axiomatic

program 31
8 Conclusion 34
9 Appendix 35
10 References 36



1 Introduction

Until recently the axiomatic method! had been the primary method of inves-
tigation in a few branches of economics and game theory, such as abstract
social choice, inequality measurement, and utility theory, but in the last few
years its use has considerably expanded. This has certainly been the case
for two important domains of game theory where it had been applied at the
very beginning. One of them is bargaining theory, which is concerned with
the selection of a utility allocation from some feasible set (see Thomson,
1996b, for a survey). The other is the theory of coalitional form games with
transferable utility, which deals with the determination of players’ rewards
as a function of the profitability of the arrangements that they can make in
groups (see Peleg, 1988, for a detailed treatment). More remarkably, several
- models for which the axiomatic method has proved extremely fruitful have
recently been identified. Axiomatic studies of these models have shed addi-
tional light on well-known solutions, and sometimes led to the discovery of
new solutions. The models concern the subjects listed below. In each case,
I give a few representative references; general presentations can be found in
Moulin (1988, 1995), Young (1994), Fleurbaey (1996), Roemer (1996), and
Thomson (1996a,c).

(1) Apportionment: how should representatives in congress be allocated
to states as a function of the states’ populations, when proportionality
is desired but exact proportionality is not possible? (See Balinski and
Young, 1982, for a comprehensive treatment.)

(2) Bankruptcy and taxation: how should the net worth of a bankrupt firm
be divided among its creditors? When money has to be raised to cover
the cost of a public project, what fraction of his income should each

1A point of language needs to be clarified at the outset so as to delimit the scope of
this essay. The axiomatic method has been used at different levels of formal analysis. I
will not discuss its role in ancient mathematics (Euclidean geometry) and modern mathe-
matics (e.g. the construction of number systems). Debreu’s (1959) subtitle to the Theory
of value, “An axiomatic analysis of economic equilibrium,” reflects his objective of giving
equilibrium analysis solid mathematical foundations, and to develop a theory whose inter-
nal coherence could be evaluated independently of the (economic) interpretation given to
the variables. At a second level, we find the axiomatic foundations of utility theory and
the von Neumann-Morgenstern axioms. I will not discuss these two levels, limiting myself
to a third level, which concerns the search for solutions to classes of problems (formal
definitions of these terms appear below).



taxpayer be assessed? (O’Neill, 1982; Aumann and Maschler, 1985;
Chun, 1988; Dagan, 1996; see Thomson, 1995b, for a survey.)

Quasi-linear social choice problems: given a finite set of public projects,
and assuming that utility can be freely transferred among agents, which
project should be chosen and what share of the cost (or monetary
compensation) should each agent be charged (or receive)? (Moulin,
1985a,b; Chun, 1986.)

Fair allocation in economic contexts: the general question is whether
efficiency can be reconciled with equity, but equity is a multifaceted
concept, and a myriad of specific issues can be raised. Many have now
been resolved for a wide range of models. (See the surveys by Moulin,

1995; Thomson, 1996a,c; and Moulin and Thomson, 1996; Kolm, 1997.)

Cost allocation: given a list of quantities demanded by a set of agents
for a service or a good, and given the cost of producing the service or
the good at various levels, how should the cost of satisfying aggregate
demand be divided among the agents? (Tauman, 1988; Moulin, 1993b;
Moulin and Shenker, 1991, 1992, 1994; Kolpin, 1994, 1996; Aadland
and Kolpin, 1996.)

Coalitional form games without transferable utility: given a set of fea-
sible utility vectors for each group of agents, or “coalition”, how should
agents’ payoffs be chosen? (Aumann, 1985; Hart, 1985; Peleg, 1985;
see Peleg, 1988, for a survey.)

Matching: given two groups of agents, each agent in a group being
equipped with a preference relation over the members of the other
group, how should they be paired? This problem and variants had .
been the object of a number of strategic analyses (Roth and Sotomayor,
1990), but their axiomatic analysis has recently expanded in a num-
ber of new directions (Sasaki and Toda, 1992; Sasaki, 1995; Kara and
Sonmez, 1996, 1997; Toda, 1991, 1995, 1996; Sénmez, 1995, 1996).

‘Measurement of the freedom of choice: given two sets of possible

choices, when can one say that one set offers greater freedom of choice
than the other? This literature, initiated by Pattanaik and Xu (1990),



is-a very recent entry into the field but it is expanding fast (Bossert, Pat-
tanaik, and Xu, 1994; Bossert, 1997; Klemisch-Ahlert, 1993; Kranich,
1996, 1997; Kranich and Ok, 1994; Puppe, 1995).

(9) Equal opportunities: given a group of agents with different talents or
handicaps, how should resources be distributed among them? Here,
the litterature is also very new (Bossert, 1994; Fleurbaey, 1994, 1995;
Iturbe and Nieto, 1996; Maniquet, 1994; Bossert, Fleurbaey, and van
de Gaer, 1996).

It may be timely to look at these various developments in a unified way
and to review the methodology on which they are based. 1 have two main
goals.

1. My first goal is the pedagogical one of explaining how an axiomatic
study should be conducted and the axiomatic program envisioned.

2. My second goal is to give some idea of the recent progress that has
been permitted by the use of the axiomatic method, in particular with
regards to concretely specified models of resource allocation. For that
reason, many of the examples that I take to illustrate points of peda-
gogy belong to this area. I certainly do not attempt to give a complete
presentation of the axiomatic literature, and in particular, I take almost
no example from the considerable theory of Arrovian social choice. On
this subject, a number of other works are available (Sen, 1970; Kelly,
1978; Fishburn, 1987).

This study has grown much beyond what I had planned, and I have
divided it into two parts.

A reader’s guide. Each section opens with a compact statement of the
point I am developing. This statement is usually italicized. I continue with
examples illustrating the point, in one or several indented paragraphs. In
addition to the theory of resource allocation, these examples are most often
taken from the theory of cooperative games. Part I continues as follows:

e Section 2: I introduce the basic notions of a problem and a solution.

e Section 3: I describe the components of an axiomatic study, its starting
point, its goals, and the sort of results that we should expect from it.

3



Section 4: I discuss the issue of independence of the axioms in a char-
acterization, by which I mean both their logical independence but also
their conceptual independence.

Section 5: I present two typical errors made in the formulation of ax-
ioms.

Section 6: I widen the scope of the discussion and explain how each
axiomatic study should be seen within the framework of what I call the
axiomatic program. I describe the goals of this program.

Section 7: I give a schematic representation of the scope of the ax-
iomatic program.

In Part II, I discuss the scope of the axiomatic method and its recent appli-
cations to game theory and resource allocation. Alter a short introduction
(Section 1), it continues as follows:

Section 2: I present the alternatives to the axiomatic method, and
discuss their connections to it.

Section 3: I respond to a number of criticisms that have been raised
against the axiomatic method.

Section 4: I present and criticize the view that the scope of the ax-
iomatic method is limited to abstract models, and to cooperative situ-
ations.

Section 5: I discuss the relevance of the axiomatic method to the study
of resource allocation. I introduce the distinction between abstract and
concrete models and discuss the limitations and the merits of abstract
models.

Section 6: I discuss the relevance of the axiomatic method to the study
of strategic interaction. I advocate a wider use of the axiomatic method
in the study of conflict situations. I point out that the opposition that
is often made between the axiomatic and the strategic approaches in
game theory is conceptually flawed. Finally, I argue in favor of an
integrated approach in which the axiomatic method is given the place
it deserves.



2 Basic set-up: problems and solutions

Before defining the axiomatic method, I introduce the basic concepts of
“problems” and “solutions”, and the terminology that I will use.

2.1 Problems

Any investigation starts with the specification of a domain of problems with
which it is concerned. A problem is given by specifying data pertaining to the
alternatives available, and data pertaining to the agents (players, consumers,
firms, generations ...). Usually included are the preferences of the agents
over the alternatives.

Problems can be described in varying degrees of detail. To illustrate the
wide range of possibilities, note that an “Arrovian” social choice problem
(Arrow, 1963; Sen, 1970) simply consists of a (usually unstructured) set of
feasible alternatives, together with the preferences of the agents over this
set. Bargaining problems and coalitional form games consist only of sets of
attainable utility vectors. For normal form games, a set of actions is specified
for each agent, along with the utility vector associated with each profile of
actions. For extensive form games, sequences of actions are given together
with the utility vector associated with each profile of sequences of actions.
These models are already more concrete, as they show how utilities result
from individual choices, even more so of course when a description of the
sequential structure of the actions is included. For allocation problems in
economic environments, the precise physical structure of the alternatives is
described. These problems stand at the opposite end of the spectrum from
abstract social choice problems.

In what follows, I frequently take these concrete models as illustrations
and I assume some familiarity with the basic definitions, and if not with all of
the axioms that have been considered in their study, with at least the general
principles underlying the central axioms, and with the main solutions. The
appendix contains short descriptions of the models.



2.2 Solutions

Given a domain of problems, D, a solution? on D is a correspondence that
associates with every D € D a non-empty? set of alternatives in the feasible
set of D.* My generic notation is F' for solutions, X for the universal space
of alternatives, and X (D) for the feasible set of D. Altogether, a solution is
therefore a correspondence F:D — X such that § # F(D) C X(D). The
aim of the investigation is to identify “good” solutions, good in the sense that
they provide either an accurate description of the way problems are resolved
in the real world, or the recommendation that an impartial arbitrator could
make.

Solutions are allowed to be multivalued in some models, and required to
be singlevalued in others. Whether the objective is descriptive or prescrip-
tive, singlevaluedness is of course desirable: a solution that makes precise
predictions or recommendations is more likely to be useful. However, sin-
glevaluedness is often a very strong requirement and for many models, the
search has been for multivalued solutions. ‘ '

Bargaining theory is an example of a domain where singlevaluedness
has been imposed in almost all cases.

In the theory of coalitional form games with transferable utility, a
number of singlevalued solutions exist but several important ones are
multivalued. When utility is not transferable, singlevaluedness is very
demanding.

In the study of resource allocation, multivaluedness is usually permit-
ted. Here too, singlevaluedness would be an unreasonably strong require-
ment. In some special cases, (examples are bankrupcty and taxation
problems, and one-dimensional models with single-peaked preferences,
both in the private good case and in the public good case), it is met by
a number of interesting solutions.

2A variety of other terms are used, such as “rule”, “mechanism”, “solution function”,

“solution concept”, and “correspondence”.

3The non-emptiness requirement is not universally imposed. This issue of whether it
should be is discussed later.

“Note that I do not consider here the problem of deriving a ranking of the set of feasible
alternatives, the central objective of the Arrovian social choice literature.



3 The components of an axiomatic study

An axiomatic study often begins by noting that for a given domain of prob-
lems several intuitively appealing solutions exist, and that some means should
be found of distinguishing between them. Alternatively, it may start with
the observation that there appears to be only one natural candidate solution,
and be motivated by the desire to find out whether other solutions may be
available after all. Yet, for other classes of problems, no well-behaved solution
is known, and the axiomatic approach is a good way of finally uncovering at
least one such solution, or identifying how close solutions can get to meeting
various criteria of good behavior.

Here are the components of an axiomatic study.

1. It begins with the explicit specification of a domain of problems, and
the formulation of a list of desirable properties of solutions for that
domain.

2. It ends with (as complete as possible) descriptions of the families of
solutions satisfying various combinations of the properties.

It should also include

3. An analysis of the logical relations between the properties;

4. A discussion of whether plausible respecifications of the domain would
affect the conclusions, and if so, how;

5. A discussion of the implications of substituting for the properties nat-
ural variants.

Studying the logical relations between the axioms is an effective way to
evaluate their relative power. Understanding the implications of alternative
specifications of the domain is important too since it is frequently the case
that other choices could have been made that are just as natural. The ro-
bustness of our conclusions with respect to these choices should be tested.
Formulating and exploring variants of the azioms is equally useful as it is
not rare that the general ideas that constitute our point of departure can
be given slightly different and almost equally appealing mathematical forms.
We need to know the extent to which our conclusions are sensitive to choices



between these various forms, choices whose conceptual significance may be
limited.

An axiomatic study often results in characterization theorems. They are
theorems identifying a particular solution or perhaps a family of solutions,
as the only solution or family of solutions, satisfying a given list of axioms.
A characterization is the most useful if it offers an explicit description of the
solution(s); in the case of a family, a formula specifying it as a function of
some parameter belonging to a space of small mathematical complexity (say
a finite dimensional Euclidean space) is of greatest value.>® The format of a
characterization is as follows:

Theorem 1 (Characterization Theorem): A solution F:D — X satisfies
azioms Ay,..., Ay if and only if it is solution F* (alternatively, if and only
if it belongs to the family F*.)

An axiomatic study may also produce impossibility theorems, stating the
incompatibility of a certain list of axioms on a certain domain.

3.1 The objective of an axiomatic study should not
in general be the characterization of a particular
solution

In the previous section, I stated that the objective of an axiomatic study
should be to understand and to describe as completely as possible the impli-
cations of lists of properties of interest. Instead, authors often start with a
sentence such as: “Our objective is to characterize the following solution: . ..”
Apart from two classes of exceptions discussed below, I do not consider this
to be a legitimate goal.” Whatever reasons we have of being interested in a

50f course, it is not up to the investigator whether such a formula exists.

6An analogy with particle physics may not be totally out of place. There, the search
is for the minimal list of elementary particles in terms of which all other particles can be
described. These elementary constituents are the “atoms” of the theory. Similarly, an ax-
jomatic characterization can be seen as the “decomposition” of a solution into elementary
properties. One important difference though is that a given solution can sometimes be
characterized in several alternative ways.

7What motivates the analysis should not in principle affect the analysis itself, but in
fact it often does, and a number of errors commonly made can be traced to this unjustified
objective.



particular solution, and some of them may be quite justified, does not usually
make a characterization of the solution a valid objective.

A first reason for such an interest is that the definition of the solution
may be intuitively appealing. But this does not suffice to justify the exclusive
focus on the solution because there may be other solutions whose definitions
are intuitively appealing. How then are we to decide among them?

Another reason may be that the solution seems to give the right answers
in particular situations about which, once again, intuition appears to be a re-
liable guide. But here too, other solutions may be equally successful for these
examples. Moreover, for us to infer from the examples that good behavior
is to be expected from the solution in general, they should be representa-
tive of sufficiently wide classes of situations. This suggests that the class
of situations that each example illustrates be formally identified, that the
requirement on a solution that it behave in the intuitively desirable way for
that class be formulated as an axiom, and that the implications of this axiom
be investigated. I will discuss this program in detail below.

3.2 The objective of charactei'izing a particular solu-
tion is legitimate in some situations

A first exception to the principle stated above, namely that the objective of an
aziomatic study should not be the characterization of a particular solution, is
when the solution happens to be widely used in practice. A second exception
is when the solution has played an important role in theoretical literature.
We may be able to discover through an aziomatization why the solution has
come up in the real world or in theoretical studies. ‘

1. Important examples of this kind can be found in the contexts of re-
source allocation and social choice.

A primary one is the Walrasian solution. It is quite remarkable that
the Walrasian solution has guided production and allocation decisions in
so many different historical contexts, and very natural to infer that it
must have special properties that no other solution satisfies: identifying
the properties characterizing the Walrasian solution becomes a legitimate
exercise.

In the last two decades, some answers have been found to this ques-
tion. Indeed, although its informational merits had been noted and given
intuitive descriptions for a number of years, it is only relatively recently

9



that precise notions of informational efficiency have been formulated, and
characterizations of the solution on the basis of these properties devel-
oped: under certain assumptions, it is “best” from that viewpoint (Hur-
wicz, 1977); under related assumptions, it is also “uniquely best” (Jordan,
1982).8

Majority rule and the Borda rule are examples of voting rules that are
frequently applied, and again, it is proper to ask: What are the properties
that these solutions must enjoy, and others not, that have led to such wide
use? Here too, characterizations due to May (1952), Young (1974), Ching
(1995) and others, have thrown considerable light on the issue. '

2. Examples in the second category are formulas or algorithms that are
sometimes suggested. We are often drawn to “simple” or “elegant” formulas,
or formulas that can be given a simple interpretation. Similarly, certain
algorithms or procedures may appeal to our intuition. I find it quite natural
and justified to be curious about whether the intellectual appeal of a formula
or algorithm is due to their embodying properties of general interest.

A solution for coalition form games with transferable utility defined
by means of an attractive algorithm is the nucleolus (Schmeidler, 1969;
Kohlberg, 1971). It is mainly this intuitive appeal that had made this
solution a frequent point of reference in the game theory literature and
it was natural to wonder whether a formal justification for it could be
found. Such a justification, based on an idea of consistency, was indeed
eventually discovered for a variant known as the prenucleolus (Sobolev,
1975; see below for a discussion). '

8Clearly, if the objective is to understand what features of the Walrasian solution has
made it an almost universal means of exchanging goods, this search for an axiomatization
should proceed under an additional constraint, namely that the axioms be pertinent to the
“spontaneous” development of institutions. In that respect, I believe that explanations
based on considerations of informational simplicity are the most likely to be the “right”
ones, whereas I very much doubt that the variable population considerations such as
consistency that recently have led to the Walrasian solution have much relevance (more
on this later). Of course, this does not mean that wanting to figure out the implications of
consistency is not worthwhile, and it is of great interest that the Walrasian solution should
have emerged from such considerations as well. To summarize, I would say that wondering
whether certain properties of informational simplicity characterize the Walrasian solution
is legitimate, but it is the characterization of the class of solutions satisfying consistency
that we should be after, whether or not the Walrasian solution belongs to it, and not the
characterization of this particular solution on the basis of such a condition.

10



But note that whether the goal is to understand why a solution is used
in practice or where its intellectual appeal resides, if characterizations are
possible, it is the properties on which they are based that should take center
stage in further research on the subject.

To pursue our last example, the focus of the literature that followed
Sobolev’s work has indeed been on identifying the implications of various
consistency notions.

When we need to simply understand, perhaps not to characterize, a par-
ticular solution, because the solution has already merited our attention by
enjoying some central properties and we would like to know more about it,
. I claim that the axiomatic method can be of great help, and I propose a
protocol for its use in Section 5.2.

3.3 The characterization of a unique solution is not
necessarily more useful than the characterization
of a family of solutions

A characterization theorem has the merit of completely describing the impli-
cations of a list of properties, and that is why we should be striving for such
results. Although many authors prefer a characterization of a single solution,
presumably because the class of problems under study has then been given a
unique resolution, I will also challenge this view and say that such a char-
acterization is actually not as valuable as the characterization of a family of
solutions.

Indeed experience tells us that, more often than we would like, impossi-
bilities are precipitated by relatively short lists of properties. Typically, if we
have shown that a certain list of properties are satisfied by all the members
of a family of solutions, we will be eager to impose additional requirements.
Some of them may be met by several members of the family, and our next
task will be to find out exactly which they are. Starting with the property
that we consider the most important, we should then identify the subfamily
satisfying it. If this subfamily still contains more than one element, we should
bring to bear the property that we consider to be the second most important
..., and we might very well proceed until a single solution remains.

More likely however, since we rarely have in mind a strict priority of
properties, the analysis will branch off in several directions, depending on

11



the order in which we impose the additional properties, each branch possibly
ending with the characterization of a unique solution. This sort of tree struc-
ture of our findings is typical of an axiomatic study. Certainly, at a stage
when several solutions are still acceptable, it is natural to want to know if
they should really be thought of as equivalent, or whether they can be distin-
guished on the basis of additional properties of interest. Then, the objective
of characterizing the various solutions “from each other” becomes legitimate.

We will probably want to conclude an axiomatic study with characteri-
zations of particular solutions, because such theorems indicate that we have
then reached the boundary of the feasible. However, the number of these
individual characterizations, and therefore the scope of the study will be all
the greater if our first findings are characterizations of families of solutions,
that is, if we are successful in describing the implications of lists of properties
that indeed are not strong enough to force uniqueness.

3.4 For practical reasons, once the objectives of an ax-
iomatic study have been stated, the analysis itself
may have to begin from solutions

Although properties come first conceptually, it is certainly useful from a prac-
tical viewpoint, and in some cases very useful, to have at our disposal several
examples of solutions when starting an aziomatic study. In fact, we are more
likely to achieve our goal if we have available a wide repertory of them. The
examples can be used in testing conjectures concerning the compatibility of
axioms and the independence of axioms in characterizations, an issue dis-
cussed next.®

4 Independence of axioms in characteriza-
tions
Here, I develop the view that the study of the independence of the axioms

in a characterization should be part and parcel of the analysis. By the
term independence, we usually understand “logical” independence, but I also

°It is actually unusual for a new solution to emerge for the first time in an axiomatic
study. For most domains, the solutions that have been found the most valuable had been
given intuitive definitions first and axiomatic justifications have been found later.

12



discuss what can be called the “conceptual” independence of the axioms.
I first define these terms. Next, I argue that although axioms should be
logically independent and express conceptually distinct ideas, they should be
compatible in their spirit. Finally, I clarify a logical issue concerning the way
in which a characterization is affected by expanding the domain of problems
under consideration.

4.1 In a characterization theorem, the axioms should
be logically independent

Recall the “if and only if” format of a characterization theorem. The issue of

independence pertains to the statement: “If a solution satisfies a certain list
of axioms, it is solution F™*.” This is the “uniqueness part”, the other direc-

tion being the “existence part”. The axioms are independent if by deleting

any one of them, it is not true that the solution F* remains the only admis-

sible one. Verifying existence is usually easier, principally because the work

can be divided into separate steps, one for each of the axioms, whereas the

uniqueness part has to do with the way the axioms interact.

4.1.1 A first reason to establish independence is to ensure that
our results are stated in the most general form

The obvious argument in favor of independence concerns the generality of
our conclusions: if one of the azioms is redundant, we widen the scope of the
result by deleting it.

The interest of many researchers in characterizations lies in the mathe-
matical appeal of results “packaged” as “if and only if” theorems. However,
we often know more than what such a theorem says. In the course of analysis,
we may have discovered that if some of the axioms were weakened in certain
ways, the solution that is characterized would remain the only acceptable
one (in other words, we know more than what the uniqueness part says). We
may also have learned that the solution actually satisfies stronger versions
of some of the axioms. Consequently, the “if and only if” format is a little
dangerous: it conceals some of the information that we have. In particular,
it may result in a uniqueness part in which the axioms are not independent.

If we have shown that a certain axiom can be deleted from the uniqueness
part, we should write the characterization without it, but remark separately

13



that the solution does satisfy it. If uniqueness does not hold without the
axiom but does with a weaker but natural version of it,'° we should use that
version in the characterization but point out that the solution happens to
satisfy the stronger version. If the solution satisfies much stronger versions
of the axioms than the ones used in the uniqueness part, we should probably

not present our findings as an “if and only if” theorem.

4.1.2 A second, practical, reason to establish independence of the
axioms is to discover more general results

A practical reason for checking independence has to do with research strategy:
it 1s a way of exploring the “neighborhood” of the characterization. The
better we know this neighborhood, the more confident we will be about the
correctness of our results. This exploration may also help us discover other
techniques of proof for the characterization, or simplifications of the proof
that we have.

4.1.3 How to establish logical independence

In order to establish the independence of A;, say, from the other axioms, it
suffices to exhibit one solution different from F* and satisfying A,,..., Ay,
but not A;. However, we should not be satisfied with just one or any example
of a solution, for several reasons.

1. First, the ezamples should be as “natural” as possible; ideally, they
should be solutlons that we might have been tempted to use on a priori
grounds, such as solutions that we know enjoy other properties of interest, or
solutions that have been used in the literature. Establishing independence in
this way will provide a direct explanation of why these potentially worthwhile
solutions are disqualified given our objectives.

In the context of bargaining theory, in order to prove that contraction
independence is independent of Pareto-optimality, symmetry, and scale
invariance, four axioms that characterize the Nash solution, it is best to

107 write natural because it is often possible to carry out proofs with weaker but artificial
conditions. In proofs, we only apply the axioms to some selected situations. The weaker
conditions obtained by limiting the scope of the original ones to these situations will
certainly suffice for the uniqueness proof but using them will not necessarily give a “better”
theorem.
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bring up the Kalai-Smorodinsky solution, which many studies have shown
is a major competitor to the Nash solution, instead of obscure solutions.

2. Second, to be really useful, the examples may very well have to satisfy
properties that do not appear in the list A,, ..., Ar. A basic property may be
implied by some list of axioms that is being studied, but not by the shorter
list obtained by dropping one of them. Then, the independence of this axiom
from the other should also be investigated under the additional assumption
that the solution satisfies this basic property.

For instance, in many models, continuity is implied by lists of axioms
that we consider, and therefore we do not impose the property separately.
If the list Ay, Ay, ..., Ar does not include continuity, the independence
of A; from A,,..., Ay can be established by exhibiting a solution that
may well violate this property. However, continuity being in most cases
very natural, we will want to know then whether A; is independent from
Aj, ..., Ay together with continuity. If not, A; can be replaced by conti-
nuity in the characterization, and this might be a better result (of course
we should not forget to note then that the solution satisfies A;, and also
to state the characterization with A,;).

3. Finally, we should look for as wide a class of counterexamples as pos-
sible. Indeed, we might be able in the process to identify all of the solutions
satisfying As, ..., Ag. This is not necessarily the result that we will write up
though, since the proof of the stronger theorem will probably be more com-
plex. If we judge that the cost of the additional technical developments is
too high in relation to the added generality of the theorem, we should retain
the simpler and less general result, but inform our readers of what we know,
in a remark, a footnote, or an appendix, with a degree of detail that depends
of course on our intended audience. From this characterization of the class
of solutions satisfying A,,..., Ax, it will typically be easy to deduce how
the class would be further restricted by adding either A;, or one of several
conditions that are reasonable alternatives to A;.1' Section 3.3 elaborates on
this point.

117¢ is not entirely true that given any two lists of axioms related by inclusion, charac-
terizing the implications of the shorter list is necessarily more difficult. For instance, the
classes of solutions satisfying only Pareto-optimality, or only symmetry, are of course very
simple to describe. It is probably more accurate to say that up to a point, the difficulty
increases. Then, it starts decreasing. I am not making a formal point here, but this state-
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In the context of bargaining theory, symmetry can be shown to be
independent of the other three conditions that we listed earlier as char-
acterizing the Nash solution, by simply producing the solution defined by
maximizing the product of player 1’s utility and the square of player 2’s
utility. However, the whole class of solutions satisfying these three condi-
tions can essentially be obtained by noting that maximizing any product
of utilities would also work, and it is much more informative to exhibit
this class.!?

4.2 1In a characterization, the axioms should express
conceptually distinct ideas

Although in a given characterization, several axioms may be motivated by
the same general principle (such as a principle of fairness, or a principle
of incentive-compatibility), each aziom should preferably embody only one
specific aspect of the general idea.

I write “preferably” because, like most of the other rules formulated here,
this recommendation should not be followed too rigidly. I now give three
reasons for that.

1. A first reason for a given aziom to incorporate distinct conceptual
constderations is when it has a simple and direct procedural interpretation.

In bargaining theory, the axiom of midpoint domination, which says
that the solution outcome should dominate the average of the agents’
most preferred alternatives, is an illustration. It does embody partial no-
tions of efficiency (since the outcome should be sufficiently close to the
boundary of the problem for this domination to be possible), symmetry
(the point that is to be dominated is defined in a symmetric way), and
scale invariance (the point is defined in a scale invariant way). However,
it implies none of these three axioms.!® Moreover, it is descriptive of an

ment describes fairly accurately most situations with which I have some familiarity. A
main reason is that the basic axioms that we tend to impose first are one-problem axioms
whose implications are usually much easier to determine than those of “multi-problem”
axiorns. The distinction is discussed in detail below.

12The qualification “essentially” is due to the fact that when violations of symmetry
are extreme, certain dictatorial solutions and lexicographic extensions of them are also
admissible.

13 A very simple characterization of the Nash solution can be obtained by means of this
axiom and Nash’s contraction independence (Moulin, 1988).
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intuitively appealing scheme that agents often use: the midpoint corre-
sponds to the vector of utility levels that they reach when they randomize
with equal probabilities between their preferred outcomes.

A closely related example, taken from the theory of coalitional form
games with transferable utility, is the requirement that for the two-person
case, the solution coincides with the so-called “standard solution” (Hart
and Mas-Colell, 1989), the solution that picks the alternative at which
the surplus -above the individual rationality utility levels is split equally.
Again, this requirement embodies partial notions of efficiency and sym-
metry, but it does so in a way that is very intuitive. It too corresponds
to the flipping of the coin to which agents often resort in practice.

I will also note two difficulties — and these are the other two reasons to
which I alluded above — in following the recommendation not to incorporate
in an axiom distinct conceptual considerations, which should warn us against
being too dogmatic in putting it in practice:

2. Our judgment whether a given aziom does miz ideas that would better
be kept separate may well depend on the perspective taken.

In the theory of coalitional form games with transferable utility, and
for the fixed: population models in which it is typically used, the core
can certainly be taken as a primitive notion. However, when the per-
spective enlarges so as to permit variations in populations, and axioms
are introduced in order to relate the recommendations made by solutions
in response to such variations, the core can be decomposed in terms of
individual rationality and consistency (Peleg, 1985, 1986).

In the context of resource allocation, the notion of an envy-free allo-
cation is another example that is intuitively appealing from a normative
perspective, and it is difficult to conceive of more basic ones from which
it could be derived. Yet, when the perspective shifts from uniquely nor-
mative considerations and strategic concerns are addressed in addition,
no-envy can:be derived under very mild domain assumptions from the
much more elementary fairness condition of equal treatment of equals and
the implementability condition of Maskin-monotonicity (Moulin, 1993a;
Fleurbaey and Maniquet, 1997).* For an example taken from the theory
of non-cooperative games, to which I return below, Nash equilibrium can

14This is not anjexact decomposition, since these two axioms together only imply no-
envy; they are not equivalent to it.
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be decomposed — this decomposition is exact — in terms of individual
rationality, .consistency, and converse consistency (Peleg and Tijs, 1996).

3. The final reason is that in the process of gaining a deeper understanding
of a subject, our judgment about possible formal decompositions of an aziom
into more elementary ones may change. As we discover links between notions
that we previously perceived as distinct, the way in which we partition and
structure the “conceptual field” into individual conditions sometimes evolves.

On a variety of domains, monotonicity and consistency conditions are
traditionally thought of as being unrelated, and they are stated separately.
However, in some situations such as the allocation of private goods, they
can actually be understood as “conditional” versions of a general “re-
placement principle”, a strong requirement of solidarity, which says that
a change in the environment in which agents find themselves should af-
fect all of their welfares in the same direction. It pertains to situations
in which agents are not “responsible” for the change when it is socially
undesirable, nor deserve any “credit” for it when it is socially desirable. If
the principle is applied to the departure of some of the agents, the issue is
whether they leave empty-handed or with their components of what the
solution has assigned to them. When imposed together with efficiency,
we therefore obtain either a monotonicity condition or a consistency con-
dition. (This point is developed in Thomson, 1995a.)

Similarly, we could argue that for the problem of fair division, the stan-
dard forms of the monotonicity conditions such as resource-monotonicity,
which states that an increase in the social endowment should benefit ev-
eryone, or population-monotonicity, which states that an increase in the
population, resources being kept fixed, should penalize every agent ini-
tially present, make sense only in the presence of efficiency. Since effi-
ciency will indeed typically be required, the demand that all “relevant”
agents be affected in the same direction if the parameter (resources or
population) increases or decreases — this too is a requirement of solidar-
ity — may be judged more natural (Thomson, 1995a).

. Finally, in private ownership economies, an axiom such as individual-
endowment monotonicity, which states that if an agent’s endowment in-
creases, he should not be made worse off, can be interpreted from the
normative viewpoint, as reflecting the desire that the agent should ben-
efit from resources on which we feel that he has legitimate rights, as he
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may have obtained them through an inheritance or thanks to his hard
work for instance. Alternatively, it may be seen from the strategic view-
point, as providing the agent the incentive never to destroy the resources
he controls, as this would result in a socially inefficient outcome.

4.3 In a characterization, the axioms should be con-
ceptually compatible

Although it is important that azioms be logically independent and that they
express distinct ideas, it is equally important that they be conceptually com-
patible: the intuition underlying the formulation of one aziom should not
be violated by the others. This point seems clear enough but nevertheless
deserves to be made.

I will give an example from the theory of bargaining that has to do
with the joint use of continuity and consistency. The most commonly
used topological notion (Hausdorff topology) in that theory ignores sub-
problems involving subsets of the players. On the other hand, consistency
is motivated by the desire to link recommendations across cardinalities,
and certain subproblems appear explicitly in its statement. When this
condition is imposed, I claim that it is therefore natural to use a continuity
notion based on a topology that recognizes the importance of subprob-
lems too. (Such a topology is used in Lensberg, 1985, and Thomson,
1985.)

The position could be adopted that in the formulation of each axiom we
- should take into account the essential ideas underlying the others. Iillustrate
the position with several examples, and for the reader who thinks that it may
go a little too far — note that indeed its implementation creates a tension
with the objective expressed in the previous subsection — I propose a less
radical choice.

The first example again has to do with efficiency and symmetry, two
properties that have been imposed together in a wide range of studies.
In this applfpation, an extreme form of the position stated in the pre-
vious paragraph is that if efficiency is imposed, the axiom of symmetry
should be written so as to apply to problems from which it is only re-
quired that their Pareto-optimal boundary be symmetric (as opposed to
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problems that are fully symmetric). Such a formulation reflects a strong
view that efficiency should be given precedence. For another illustration
of this viewpoint in the context of Arrovian social choice in economic
environments, see Donaldson and Weymark (1988). A somewhat more
flexible formulation is to require that two problems with the same Pareto
set be solved at the same point!® and to keep the other axioms including
symmetry in their usual forms. »

To take another example, if individual rationality is one of the require-
ments, it may make sense in the formulation of monotonicity conditions
to focus on the subset of the feasible set at which the individual rational-
ity conditions are met. Here too, I would suggest instead that an axiom
of independence of non-individually rational alternatives be used in con-
junction with the others — such an axiom has indeed appeared in the
literature (Peters, 1986).

4.4 Evaluating characterizations by the number of ax-
ioms on which they are based

Here, I challenge the opinion sometimes heard that a characterization of a
solution or a family of solutions that makes use of “few” azioms is superior to
a characterization involving “many” azioms. Before evaluating the validity
of this position however, a “counting problem” needs to be confronted.

1. First, some requirements may be incorporated in the definition of
what is meant by the term solution, instead of being imposed separately as
axioms on solutions. If we believe that certain requirements are minimal,
“non-negotiable” requirements, whereas our position concerning the others
is more flexible, this way of proceeding may seem justified.

A central example here is non-emptiness: some authors require so-
lutions to associate with each admissible problem at least one feasible
outcome (as I have done above), whereas others state non-emptiness as
an axiom. Other conditions that are often taken as part of the definition
of a solution are efficiency and symmetry.

The choice to write a given condition as a separate axiom may depend
on how restrictive the condition is for the domain under consideration.

15Such a condition could be called independence of non-Pareto optimal alternatives.
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For bargaining problems, existence is almost never an issue, whereas
for coalitional form games without transferable utility, it often is. It is
therefore safe to incorporate non-emptiness in the definition of a solution
to the bargaining problem, and prudent to impose it as an axiom in the
study of coalition form games.

However, I believe that even for requirements that we will certainly want
to impose, the analysis always benefits from including a discussion of the
extra freedom gained by deleting or weakening them, and for that reason, it
is best to have them listed as separate axioms.

2. A second reason for the counting problem mentioned above is that it
is of course always technically feasible to combine several axioms into one.
By so doing, we decrease the number of axioms but not the demands on the
solutions. I argued earlier that axioms should embody conceptually distinct
desiderata, and this difficulty should in principle not occur, but practice is
sometimes a different matter. 1 gave several reasons why in the previous
section.

This counting problem being clarified, and contrary to the view stated
above, my position here is that the characterization of a solution or family
of solutions making use of a large number of azioms must be seen as good
news, provided, once again, that they are logically independent and express
conceptually distinct ideas, as they should. This is because, for the class of
problems under study, a solution or family of solutions exists that is well-
behaved from a variety of perspectives.!® The benefit of such theorems is
even larger when axioms are only greater when, more modestly, axioms only
specify plausible desiderata.

On the other hand, and to emphasize a position that I expressed earlier,
we should in general be striving for theorems describing the implications of few
properties together. These are better theorems since the implications of ad-
ditional properties will typically be easily obtained from them as corollaries.
In order to take advantage of such theorems, we should of course thoroughly
explore the derivation of these possible corollaries. This argument will take
its full force below when I discuss the importance of seeing each axiomatic
study from the perspective of what I refer to as “the axiomatic program”.

161 find the argument that a characterization based on fewer axioms is more “elegant”
to have no relevance to the program with which I am concerned here.
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4.5 A logicai issue: how enlarging or restricting the
domain affects a characterization

It is important to understand how a characterization is affected by enlarging
or restricting the domain of problems under consideration. Here, I attempt
to clarify some common misconceptions about this issue. In particular, it is
often said that the characterization of a given solution on a larger domam is
a weaker theorem. To what extent is this a valid statement?

The first point I would like to make is that it is not technically meaningful
to speak of the same solution as having been characterized on two different
domains. Formally, a solution is a triple consisting of a domain, a range,
and “arrows” from every point in the domain to the range. By changing
the domain, we change the solution and therefore we cannot characterize a
given solution on two distinct domains. A reason for much of the confusion
here is that we often keep the same name for the mapping when we change
the domain. There is of course a good reason for this: it is that in most
cases a single formula, or a single algorithm, or a single set of equilibrium
equations ... produces the two solutions.

In the theory of resource allocation, we use the same phrase of “Wal-
rasian solution” to designate the solution that selects the Walrasian allo-
cations whether or not preferences are strictly monotonic or strictly con-
vex .... It is certainly meaningful to apply the “Walrasian definition”,
or the “Walrasian formula”, to these various domains.

A circumstance in which there is not much danger of thinking of a formula
or algorithm as defining the “same” solution on various domains is when
we mainly care about “one-problem” properties of solutions. However, as
soon as properties involving comparisons of problems are brought in (axioms
involving pairs, or triples, or sequences of problems), we risk making logical
errors by not keeping in mind that applying the same definition on two
different domains gives two different solutions.

To gain further understanding of the issue, think of a solution constructed
by “combining” existing solutions as follows: arbitrarily divide the domain
into two subdomains, and apply one or the other of two arbitrarily chosen
solutions, depending upon which of the subdomains the problem to be solved
belongs to.
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For instance, on the domain of private good economies, consider the
solution that selects the Walrasian allocations when all agents have Cobb-
Douglas preferences, and the core otherwise.

We tend to immediately reject such hybrid solutions, but why? Is it be-
cause we feel that they are unlikely to meet any criteria of good behavior?
Perhaps, but whether this is true really depends on which criteria we have in
mind. If we truly cared only about one-problem properties for instance and
these properties happened to be met by each of the component solutions,
there would be nothing wrong with the hybrid solution, except perhaps for
the inconvenience of having to check which of the two cases applies. We sus-
pect however that for many additional criteria of good behavior, the hybrid
solution would be disqualified. The axiomatic method can help us formally
identify what these criteria are.

As a further illustration of the difficulty of deciding what is a legitimate
solution, I will consider classes of problems involving variable populations,
each economy being obtained by first drawing a finite group of agents from
an infinite population of “potential” agents. A solution defined on such a do-
main associates with each group of agents and each specification of the data
describing them (such as their preferences, their endowments, their produc-
tion skills ... ), a set of allocations. Consider now a solution constructed by
switching back and forth between several known solutions according to how
many agents are involved. Again, our first reaction, when confronted with
such a solution, is to reject it as “artificial”. In the paragraphs to follow, I
will try to find out whether and to what extent this view is valid.

An example for private good economies is the solution obtained by
selecting the Walrasian allocations when the number of agents is even
and the core when it is odd. An objection to this solution might well be
raised on the grounds that it is “unnatural” to go back and forth between
Walrasian notions and core notions: we should make up our mind and pick
Walrasian allocations for all cardinalities or the core for all cardinalities.
This seems convincing enough but what are the formal arguments to
support such an objection? In what sense does the Walrasian definition
for even numbers “go together” or “fit” with the Walrasian definition
for odd numbers, or the core for even numbers fit with the core for odd
numbers?
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In general, what is wrong with going back and forth between different
existing notions in defining solutions? A possible answer is that our choice
then cannot be described in terms of a single and simple formula. However,
I believe that “compactness” of a definition is not much of an argument in
its favor. To begin with, switching back and forth between two notions that
are usually discussed separately is not necessarily a major technical compli-
cation. Second, and more importantly, arguments of simplicity of definitions
should not take precedence over substantive considerations such as efficiency,
fairness, monotonicity, consistency . ..Such arguments are of course not com-
pletely irrelevant because solutions passing the single-and-simple-formula test
are more likely to satisfy the various invariance or independence properties
that have played an important role in axiomatic analysis. But if that is the
underlying reason, these properties should be formally identified and incor-
porated in the analysis.

Moreover, the single-and-simple-formula test is not in general well defined
because on a certain domain a given solution may be described in several dis-
tinct ways, each of which suggesting a different extension to larger domains.
For solutions defined on classes of problems of arbitrary cardinalities, this
difficulty often occurs because solutions that are in general distinct may co-
incide for the two-person case.

To illustrate this point in the context of resource allocation, consider
on the one hand the solution that selects the core for all economies, and
on the other hand the solution that selects the individually rational and
efficient allocations for all economies. These two solutions happen to
coincide in the two-agent case, so how is one to say that the extension of
what we choose for two-person economies to economies with more agents
should be the core or the individual rationality and Pareto solution?

How to extend a certain definition from the two-person case to the gen-
eral case is an issue that game theorists have also had to confront on many
occasions. Similar issues have been how to pass from classes of bargaining
problems to classes of coalition form games, or from classes of coalitional
form games with transferable utility to classes of games without transferable
utility.

Extending the standard bargaining solutions to classes of coalition
form games has motivated many studies. Extending the Shapley value
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(1953) from coalitional form games with transferable utility to the non-
transferable utility case has also been a central issue in the literature. In
addition to Shapley 1969’s proposal, we now know of several solutions to
games without transferable utility that coincide with his 1953 value when
restricted to the transferable utility case.

A second argument in favor of using solutions defined by means of a single-
and-simple formula is the claim that whatever considerations would lead us
to choosing a certain definition to solve problems of a given cardinality should
have led us to choosing the same definition to solve problems of any other
cardinality. ‘

I agree with this view but only in so far as we do make the effort of
uncovering what these considerations might be. This is precisely the role of
axiomatic analysis to help us in this task, as they are certainly not given to
us when we are presented with the definitions. To the extent that a char-
acterization of a solution holds independently of the number of agents, and
we do have many theorems of this kind, we may have a reason not to switch
formulas as we move across the domain. However, a number of approaches
can also be taken that explicitly address the issue of how components of
solutions should be linked across cardinalities. Consistency or population
monotonicity are two such principles that have provided arguments in favor
of using the same definition across cardinalities. But note that consistency
would not eliminate the solution that selects the core from equal division
for two-person economies and the Walrasian allocations from equal division
for economies of greater cardinalities. Yet, it would eliminate the solution
that selects the core from equal division for all cardinalities, a solution that
certainly passes the single-and-simple-formula test. I argued earlier that this
test is not always well-defined nor necessary; this example shows that it is
not sufficient either.

Let us now return to the issue of how the choice of domains affects the
generality of characterizations. On the one hand it is sometimes claimed
that the result pertaining to the larger domain is stronger. The opposite
view, that by enlarging the domain, we facilitate and therefore weaken the
uniqueness part of a characterization is also often heard. The argument here
is that since there are “more” situations to which the axioms apply, we give
them greater power.

To better evaluate these views I will rewrite the Characterization Theo-
rem in the form of two separate lemmas. In their statements, I refer to an
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extension of a solution F™* defined on the domain D to the superdomain D' as
F'™ (in practice, the same names might be used to designate both solutions):

Lemma 1 If a solution F: D — X satisfies azioms Ay — Ayg, then it is F*.

Lemma 2 The solution F*: D — X satisfies azioms Ay — Ayg.

Suppose that instead we have established the following two lemmas per-
taining to a superdomain D’ of D and a solution F'* defined on D’ and whose
restriction to D is F™*:

Lemma 3 If a solution F: D' — X satisfies arioms A; — Ag, then it is F'™*.
b

Lemma 4 The solution F"™*: D' — X satisfies azioms Ay — Ay.

Although it is clear that Lemma 4 is stronger than Lemma 2 — and to
that extent the view that enlarging the domain provides a stronger result has
some validity— there is in fact no logical relation between Lemmas 1 and 3.
Indeed, in the proof of Lemma 3, it could very well be the case that in order
to conclude that the solution coincides with F' on D, we use (and need) the
fact that it satisfies the axioms on D'\D. This is a sense in which working
on the larger domain weakens the uniqueness lemma. On the other hand,
precisely because the conclusion of Lemma 3 holds on a wider domain than
that of Lemma 1, the two results are in fact not comparable.!”

If the uniqueness result obtained on the larger domain is not logically
weaker than its counterpart for the smaller domain, it may of course be
more vulnerable to criticism: by working on a larger domain, we increase the
chance that situations exist for which the axioms are not as convincing.!®

5 Common mistakes in the formulation of ax-
10ms

Here, I discuss two mistakes commonly made in the formulation of axioms:
tailoring axioms to a particular solution and losing sight of the fact that

17There could be several solutions satisfying the axioms on the larger domain which all
* coincide on the smaller domain.

18 Although we should not expect of any axiom that it be equally appealing in all sit-
uations in which it applies, it is important however that the proof not rely precisely on
applications to situations where the axiom is less desirable, a situation that I have unfor-
tunately observed.
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priority should be given to their economic meaning.

5.1 Axioms tailored to a particular solution and lack-
ing general appeal

A frequent and unfortunate consequence of wanting to arrive at a particular
solution, a goal whose legitimacy I questioned above, is the formulation of
azioms tailored to that solution and lacking general appeal. (For a discussion
of this point in the context of the search for inequality indices, see Foster,
1994.) Conceivably, by proceeding in this way, we could uncover properties
of independent interest, but I have rarely witnessed this outcome. The most
usual one is a characterization that simply amounts to restating the definition
of the solution in a slightly different form. Of course, having at our disposal
several equivalent definitions of a given solution may be useful. However,
the axiom being typically satisfied only by the solution that the investigator
is out to characterize (this is often the tell-tale sign'?), the result does not
come as a surprise.?

5.2 Technical axioms

Avoiding technical azioms is generally desirable since what motivates our
work are economically meaningful objectives, not mathematical ones.  Un-
fortunately, this is not always completely feasible: sometimes we are able to
determine the implications of a condition of primary interest to us only in the
presence of one or several auxiliary conditions of mainly technical interest.
Note however that frequently an axiom appears technical at first, but when
we look into it a little more closely, we discover that it does have economic
content. +

In the study of bargaining problems and coalitional form games with-
out transferable utility, smoothness of boundaries, which is one of the

19We should not necessarily worry about this however. For instance, the fact that
the Shapley value is essentially the only solution to games in coalition form to have a
potential (Hart and Mas-Colell, 1989) does not make this characterization a less valuable
result. Considerations of potential are so far removed from any previous consideration
that had been brought to bear in the study of these games, and the proof so unlike any
previous one, that the result is indeed very illuminating.

290ne could argue that no result that is fully understood is a surprise, but clearly there
are degrees to which the conclusion can be guessed from the hypotheses.
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restrictions imposed on problems in the formulation of a number of ax-
ioms, is often thought of as a technical detail, but in fact it has economic
significance. Indeed the rates at which utility can be transferred between
players are meaningful information, and the fact that when moving along
the boundary of a feasible set, one may suddenly face a change in these
rates is quite relevant when selecting a payoff vector.

Perhaps an even more striking example is continuity. It is now well
understood that in intertemporal models, the topologies on which such
notions are based can be interpreted in terms of the agents’ impatience,
a central economic concept (on this point, see Bewley, 1972, and Brown

and Lewis, 1981).

6 Axiomatic studies and the axiomatic “pro-
gram”

We should not make too much of an axiomatic study in isolation and of
the fact that a particular solution has come out as the best behaved from a
certain viewpoint. By changing perspectives, some other solution might very
well emerge.

6.1 The axiomatic program

That different studies may lead to different solutions has been seen as a
difficulty with the axiomatic method, but the opposite would be surprising.
In fact, the possibility that recommendations conflict should probably be
expected, and it should be confronted. Each axiomatic study should be
evaluated in the light of other studies, that is, it should be seen within the
wider context of the aziomatic program.

The objective of the aziomatic program is to give as detailed as possible a
description of the implications of properties of interest, singly or in combina-
tions, and in particular to trace out the boundary that separates combinations
of properties that are compatible from combinations of properties that are not.

Characterization theorems are landmarks on the boundary. One addi-
tional property is either redundant, or it takes us into the realm of the in-
feasible.
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6.2 Establishing priorities between axioms

When different solutions result from different axiomatic considerations, the
axiomatic program is essentially silent on which axiom to emphasize, and
therefore on which solution to recommend. Deciding which axioms should
be given priority is up to the “consumer” of the theory. No metatheory exists
to help us. I will only state the obvious here, and observe that since many
of the critical axioms that are commonly imposed pertain to changes in the
parameters entering the description of the problems, the relevance of these
changes should be a primary consideration.

In stable economic environments, resources are fixed and in the short
run, so are populations. Then, “variable resource” and “variable popula-
tion” axioms are not very relevant. On the other hand, if frequent shocks
occur in supplies, variable resource axioms may be important; since in the
long run, population is more likely to vary than in the short run, variable
population axioms could be considered. )

In teams, we do not have to worry about agents’ misrepresenting the
information they hold privately, but in more competitive situations, “im-
plementability” requirements may be needed.

6.3 Formulating discrete weakenings of axioms

When an aziom of interest is shown to be incompatible with other important
azioms, discrete weakenings of it can sometimes be identified and studied.

For the problem of fair division in private good economies, the re-
quirement that no agent receives a consumption bundle that dominates
commodity by commodity that of any other agent — this condition is
known as no-domination — is one such example, as a weakening of no-
envy.

These weaker versions of the properties that were our starting point may
of course not be as universally applicable.

. No-domination, as a weakening of no-envy, is meaningful only in situ-
ations where the space of alternatives is endowed with an order structure
and preferences are monotonic with respect to that order (this is why
it is indeed a weakening of no-envy), whereas no-envy is a meaningful
condition even when no such structure is present.
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6.4 Formulating parameterizations of axioms

Moreover, when a basic aziom is found not to be compatible with others, it
is sometimes possible to formulate parameterized versions of it, with the pa-
rameter indicating the partial “degree” to which the aziom is satisfied. Then,
we can attempt to identify the range of values of the parameter for which
compatibility holds.

An illustration of this approach can be found in a study of the problem
of fair division due to Moulin and Thomson (1988). There, the equal di-
vision lower bound (an allocation meets this bound if every agent weakly
prefers his alloted bundle to an equal share of the social endowment)
is shown to be incompatible with efficiency and resource-monotonicity.
When the equal division lower bound is not imposed, a possibility was
known to exist, so that the question was open where the line between
possibilities and impossibilities had to be drawn. To answer it, Moulin
and Thomson introduce a parameter in the interval [0,1] that turns the
discrete requirement that the equal division lower bound be met into a
continuum of “graduated” conditions of increasing restrictiveness: when
the parameter is 0, the condition is vacuously satisfied and when it is 1, the
condition is the equal division lower bound itself. The result is that for all
positive values of the parameter, that is, no matter how much one weak-
ens the equal division lower bound, the incompatibility with efficiency
and resource-monotonicity persists. Thanks to the parameterization, the
possibility can be shown to be the rare case, and the impossibility the
norm.

6.5 Establishing functional relations between parame-
terized axioms

It is possible to go further however. When several properties are given pa-
rameterized forms, it becomes in principle possible to describe the tradeoffs
between them by means of a functional relation between the parameters. Then
the identification of this relation becomes a natural next step in our research
program. A concern for several properties that are incompatible when im-
posed in full can be partially accommodated by an appropriate selection of
the parameters. Instead of having to give up one or the other, we can decide
on the importance we would like to give to each and choose the parameters
accordingly.
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In a series of papers, Campbell and Kelly (see for instance Campbell
and Kelly, 1993, 1994a,b), have very completely described tradeoffs be-
tween efficiency and equity in the context of abstract social choice, in
terms of proportions of profiles for which difficulties occur.

An example for resource allocation is given in Thomson (1987) where
a functional relation is established between a parameter measuring the
extent to which a certain distributional requirement is met and another
parameter measuring the extent to which resource-monotonicity is satis-

fied.

7 A schematic representation of the objec-
tives of the axiomatic program

Figures 1 and 2, which give schematic representations of the objectives of the
axiomatic program, summarize a number of the ideas discussed so far.

Each point in the plane is interpreted as a combination of properties.
The downward sj‘oping line is the boundary between combinations of prop-
erties that are compatible and combinations that are not. Think of the
North-Easterly direction as indicating lists of increasing lengths. Close to
the origin are short lists that are likely to be satisfied by large classes of
solutions. As we progress in a North-Easterly direction, fewer and fewer so-
lutions are acceptable. Eventually, we reach the boundary and the realm
of the infeasible. Our goal is to trace out with as much detail as possible
this boundary, and for combinations of properties that are compatible, to
give complete descriptions of the class of solution(s) satisfying them all. To
illustrate my notation, a characterization theorem identifying a family of so-
lutions {H*:« € A} as being the only solutions satisfying axioms P; and P,
is written as “{ Py, P2} <= {H*: a € A}".

1. ‘Tradeoffs between properties (Figure 1a). A typical tradeoff
betweeen two properties is illustrated by the points {P;, P, P;} <= F and
{P1, P,, ,} <= G. They both lie on the boundary and therefore represent
combinations of properties that can be met together but in a unique way, by
solutions F" and (7 respectively. In the presence of P; and P,, only one of P,
or P4 can be met.

We may not_:':bave a good understanding of the implications of P; and P,

: ?
together, as indicated by the point marked “{P;, P,} <= ", but a theorem
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(P, P Py} = F

?
{Pth,Ps}ﬁl‘[

- -+ (P, P2, P}

{Pl,Pz,P(;} fed {H"'ﬁ:ﬁe B}

Scope of Theorem 1

{Pl’Pz'{?‘?lftLﬁ KG} {Pr, Pa, Ps, Ps) &= (H>" )

AP, Py, P, Ps) = {:‘I“"ﬁ}

{PlyPI‘PJ,P4} == {[{&ﬁ

Theorem 1:

(P, P, Py} = {(H*8. o ¢ A}

N
{P, P} <

(PP} <= (H*:a € A;p € B),

(a) (b)

Figure 1: The objectives of the axiomatic program. (a) An illustration of
the trade-offs between properties P3 and Ps. In the presence of P; and Py, we
cannot have both. (b) The scope of a theorem identifying a list of properties that
do not force uniqueness, such .as the pair {Ps, Ps}, is illustrated by the various
corollaries derived from it by imposing additional properties. By adding Ps, we
obtain a one-parameter family, and by adding Py, only one member of the family
remains acceptable. Alternatively, we could add Ps and then Fj ...

spelling out the implications of these properties would be very desirable.
Most likely, the characterizations of F' and G would be obtained as simple
corollaries. Also, the implications of adding alternative properties such as P;
might be easily obtained (perhaps to give another point of the boundary),
and the fact that some other properties, such as P, are incompatible with
P, and P, may also come out. This possibility is developed in the next
paragraph. I have indicated these potential implications as dotted lines.

2. The scope of a theorem establishing the characterization of
a family of solutions (Figure 1b). Suppose that we have shown that the
solutions satisfying P; and P, constitute a two-parameter family, a result
represented by the point marked “Theorem 1: {P,,P;} <= {H*F:ax €
A; B € B}.” Such a theorem is very useful because from it, we can often
quite easily determine the implications of additional properties. By adding
Ps, we reach a smaller family {H*: o € A}, and then by adding either P,
or P5, we reach the boundary, at the points H*# and H*"# respectively.
Alternatively, starting from {P;, P,}, we could have added P; first, to obtain
the family {H*"#: 8 € B}, and then added Ps (which perhaps would have
taken us back to H*"#), and so on. All of these corollaries indicate the
“scope™ of Theorem 1, which is symbolically indicated by the cone C whose
vertex is the point labelled Theorem 1. The cone spans a whole section of
the feasible region and of the boundary. It is not too far-fetched to think of
it as a cone of light emanating from Theorem 1, its source.
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{PMQ!}‘
{M, N}

N

{M NP o+ =1}
{M} = (M N

{N} = {M° N}

(a) (b)

Figure 2: The objectives of the axiomatic program. (a) The parameteri-
zation of a property may allow us to determine the partial extent to which the
property can be satisfied. (b) When several properties are parameterized, the
trade-offs between them can sometimes be given the form of a functional relation. -

3. Getting close to the boundary (Figure 2a). Suppose that we
have established that P, can be met but the pair {P;,Q} cannot, so that
the boundary passes between the points {P,} and {P;,Q}. This raises the
question of where exactly it lies. Does it pass “close” to {P;} (the solid line)
or “close” to {P;,Q} (the dashed line)? Properties are discrete concepts
and the question does not seem very meaningful. Yet, it is often possible
to formulate parameterized versions of them, with the parameters indicating
the partial extent to which they can be satisfied. Suppose that indeed we
have a family {@*: X € [0, 1]} of graduated conditions of increasing strength
such that Q° is vacuously satisfied and Q' = Q. In the figure, we have
schematically indicated that only a “small amount” of @ is incompatible

4. Identifying a functional relation between parameterized ax-
ioms permitting to approach the boundary (Figure 2b.) When each
of two properties is feasible but their combination is not, we can sometimes
establish trade-offs between partial, parameterized versions of the properties.
The two properties M and N have been parameterized as {M*: « € [0,1]}
and {N¥: € [0,1]}. For any pair of values of & and 3 such that o+ < 1,
the properties M* and N? are compatible. This is indicated by the curvi-
linear segment L, which represents pairs of values of the two parameters
permitting compatibility.
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8 Conclusion

In Part I of this two-part study, I have attempted to provide a user’s guide.
In Part II, I will discuss the alternatives to the axiomatic method, and give
a bird’s eye of the current state of the literature.
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9

Appendix

This appendix contains short descriptions of the various models most often
used as illustrations in the main body of the paper.

1)

(2)

(3)

(4)

(5)

(6)

A bargaining problem is a pair (B, d) of a non-empty, convex and
compact subset of R} and a point d in B. The set B is interpreted
as a set of utility vectors attainable by the n agents if they reach a
consensus on it, and d is interpreted as the alternative that will occur
if they fail to reach any compromise. Let B™ denote the class of all
such problems.

A transferable utility game in coalitional form is a vector v in
R?*'-1, The coordinates of v are indexed by the non-empty subsets
of the set of players. A coordinate is interpreted as the amount of
“collective utility” that the members of the corresponding coalition
can obtain. Let U™ denote the class of these problems.

A normal form game is a pair (5,h) where S = S} x ... x S, and
h: S — R™ For each player ¢, S; is a set of actions that he may take,
and the function A gives the payoffs received by all the players for each
profile of actions. Let G™ denote the class of all such games.

An extensive form game is a tree T, where each non-terminal node
bears as label an element of {1,...,n}, and each terminal node bears
as label a. point in R™ As compared to the previous class of games,
a sequential structure is added to the set of actions, and the nodes
indicate times at which agents choose actions. Let £™ denote the class
of all such trees.

An exchange economy is a list (Ry,..., R, w1,...,w,) where each
R; is a continuous and monotonic preference relation defined on Rﬂ_,
and w; € RY is agent i’s endowment. The integer £ is the number of
commodities. Let H™ denote the class of all such economies.

An economy with single-peaked preferences is a list (Ry, ..., Rn,
1) where R; is a single-peaked preference relation defined over the non-
negative reals. The number ) gives the amount of a non-disposable
good to be divided among the n agents. Let S™ denote the class of all
such econemies.
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