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Abstract

The market for ski runs or amusement rides often features admission
tickets with no explicit price per ride. Therefore, the equilibrium involves
queues, which are systematically longer during peak periods, such as
weekends. Moreover, the prices of admission tickets are much less responsive
than the length of queues to variations in demand, even when these variations
are predictable. Despite the queues and sticky prices, we show that the
outcomes are nearly efficient under plausible conditions. Then we show that
similar results obtain for some familiar congestion problems and for

profit~sharing schemes in the labor market.






During Christmas or Spring vacation, most ski areas have long lines. The
same is true for Disneyland and other amusement parks in peak season. This
type of crowding does not depend on surprises in demand, but instead is
systematic. Most economists look at chronic queuing and conjecture that the
suppliers would do better by raising prices. Further, most economists would
argue that the failure to price properly leads to inefficient allocations of
rides, as well as improper investment decisions. But the regular occurrence
of lines in some markets suggests that it is economists, rather than
suppliers (who have survived), who are missing something.

We argue in this paper that competitive suppliers of ski-1lift services
(amusement rides, etc.) may rationally set prices so that gqueues occur
regularly and are longer at peak tiﬁes. Under plausible assumptions, this
method of pricing can support efficient allocative decisions. 1In
equilibrium, owners of ski areas set prices for all-day lift tickets (or
equivalently, for admission tickets to amusement parks) by maximizing profits
subject to a downward-sloping demand curve. This appearance of monopoly power
leads to no inefficiency. Moreover, the equilibrium price charged for a lift
ticket may not rise with expansions of demand. Sticky prices may be
consistent with optimization by suppliers and with efficient choices of
gquantities.

There are two distinct effects in operation under lift-ticket pricing,
either of which is sufficient to imply that setting the marginal cost of a
ride equal to zero does not lead to distortions. The first effect, which we
call the package-deal effect, arises under any two-part pricing scheme with

quantity constraints. Someone who buys 10 units of a good at $1 each from a



local shopkeeper will be indifferent between standard pricing at $1 per unit
and a two-part pricing scheme with a $10 entry fee, a per unit price equal to
zero, and a limit of 10 units per customer.1

The second effect, which we label the homogeneity effect, describes
conditions under which congestion leads to no efficiency losses. The usual
argument, dating back to the two-roads problem of Knight (1924), is that free
entry into one of two activities equates average rather than marginal
returns, and thereby leads to welfare losses. This conclusion does not
follow if the same quantity equates average and marginal returns. In the
examples we consider, this coincidence arises under natural assumptions about
how congestion affects individual utility. For example, suppose that total
output in activity i takes the form xif(ni), where X4 is a measure of
capacity or desirability and nj is the number of people who participate. For
activities 1 and 2, the values of n1 and n2 that equate the average product,
xlf(nl)/n1 = xzf(nz)/nz. also equate the marginal product, xlf'(nl) =
xzf'(nz), if f(ni) is homogeneous of some degree. The same holds true if the
dependence on X and n takes the form g(x,n) where g is homogeneous of
degree 1.

In the case of ski area or amusement park pricing, we make an additional,
subsidiary point. Queues may have an effect on the allocation of resources
that has nothing to do with the cost of time. The package-deal effect
applies only if there are guantity constraints. 8ki areas and amusement

parks place no explicit constraints on the quantities that each person can

consume, but the queues impose an implicit constraint. If there are x total

1 . . . R .
This point is familiar in the context of the labor market. See Barro (1977)
and Hall (1980).



rides available and n people show up to consume these rides, the queue may
act purely as a symmetric allocation mechanism to provide x/n rides to each
person. To emphasize this alternative view of the role played by queues, we
make the extreme assumption that time spent at a ski area or amusement park
is inherently valuable so that the cost of time spent in the queue is
approximately zero. This assumption may be inappropriate for other settings,
but it is inessential for the operation of either of the two basic effects.
The homogeneity effect does not depend on any quantity constraints; the
package-deal effect does require them, but these constraints can arise in
ways other than queues.

Because ski-lift pricing illustrates both effects as well as the subtle
fashion in which quantity constraints can arise, we start with this example
and analyze it in detail. Section 2 considers the simplest case, where ski
areas are identical and consumers differ only in the cost of going skiing.
We compare the alternative modes of pricing, with emphasis on the assumption
concerning the cost of time. Then we show why lift-ticket prices may not
vary with changes in demand. Section 3 considers extensions where
individuals differ in preferences, and ski areas differ in characteristics.
Section 4 presents applications of the package-deal and homogeneity effects,
including the two-roads problem, a common-property fishing problem, and

profit-sharing arrangements for employees of a firm.

2. The Supply and Demand for Ski-Lift Services

Ta highlight the operation of the package-deal effect, we analyze first

the equilibrium with conventional pricing for individual rides at a ski area,



and then show how this equilibrium can be repackaged into one with an entry
fee—the 1ift ticket—and a price per ride set equal to zero. Section 2.1
describes the market for rides on a ski lift and works out the equilibrium.
Section 2.2 illustrates how the quantities and prices from this efficient
solution can be replicated in an equilibrium with lift-ticket pricing and
queues. Section 2.3 discusses how the results change when we allow for the
opportunity cost of time spent in a queue, then considers the factors that
might influence the choice between the alternative pricing arrangements.
Section 2.4 illustrates why lift-ticket prices may not respond to changes in
demand. The analysis in section 2 assumes that ski areas are identical and
that individuals differ only in a limited sense. In this context only the
package-deal effect is present. Section 3 discusses the homogeneity effect,

which arises when we allow for differences among individuals and ski areas.

2.1 Equilibrium with Ride Tickets

Consider a group of identical, competitive ski-lift operators, each of
whom sells ride tickets at a price P per ride. Each firm has a fixed
capacity and therefore supplies inelastically the total quantity of rides x.
Flexibility in this quantity at some positive marginal cost is more
realistic, since suppliers can open more lift lines or perhaps operate the
existing ones at greater speed. But these modifications do not change our
results. In the present case the industry's total supply of rides is Jx,
where J is the fixed number of firms.

Let qj be the quantity of ski rides for the ith person. This individual

chooses qi to maximize



subject to Y, = Pqi + Z, + C,

where Yi is real income, z, is goods other than skiing (price normalized to

i
one), and cy is an individual specific, lump-sum cost of going skiing. This
cost iIs quasi fixed because it depends only on the decision to go skiing, not
on the number of ski runs consumed.

For those who ski (qi > 0), the determination of qi can be described in
the usual way by a downward-sloping, income-compensated demand curve,

qi = Di(P). In this section we neglect variations across individuals in
these demand functions (contingent on participation in skiing)—that is, we
assume qi = D(P). A later section allows for heterogeneity of demands,
which could reflect differences across the population of skiers in tastes for

skiing or in net incomes, Yi - Ci' Given the income-compensated demand,

D(P), we can calculate a monetary measure of the gain from skiing using the

q

area under the compensated demand curve, ¢(g) = J D_l(a)da. This gain is

0
the most that an individual would be willing to pay for the opportunity to

ski g runs.

Individual i chooses to ski if the fixed cost, i plus the explicit
cost, PD(P), is less than the gain from skiing, ¢[D(P)]. Our analysis allows
the cost, cy to differ across persons and over time. On a given day, the
cumulative distribution of the ci's is described by Fs’ so that the fraction
of persons who choose to ski is FS{¢[D(P)] - PD(P)}. Since ¢[D(P)] - PD(P)
is decreasing in P, the number of skiers falls if P rises. The shift

parameter s represents changes over time in the distribution of the Ci' For



example, during weekends and vacation periods, the costs of going skiing for
the typical person are relatively low, so the number who ski is relatively
high. Overall, we can write the number of persons N who choose to ski as the
function,

(1) N = N(P,s),

aN
where 3P < 0.

By specifying that ski areas are competitive, we mean that each is small
enough that its actions have a negligible impact on aggregate quantities. In
this model (though not in those that follow) competitive behavior implies
that firms take prices as given. Equilibrium requires that the total
capacity of rides, Jx, equal the total number demanded, gN—that is,

(2) JXx = D(P)eN(P,s).
For a given value of Jx, this condition determines the equilibrium price per
ride P. As one would expect, the price P falls with an increase in total
capacity, Jx, and rises with an increase in the level of demand such as that
generated from a downward shift in the fixed costs, Ci'

Over the longer term the model also determines the size of the industry,
Jx. This scale depends on the cost of building new capacity (either more
firms J or more rides per firm x) and on the distribution of returns, as
determined by equation (2) and the distribution function of the shift

parameter s.

2.2 Equilibrium with Lift Tickets
We now show how the equilibrium described above can be implemented using

an entry fee (i.e. an all-day lift ticket) and a price per ride set equal to



zero. Let "j denote the price of a 1ift ticket at area j, and let nj be the
number of skiers who ski there. Given the total capacity x, the maximum
number of rides per skier will be qj = x/nj. In equilibrium each person will
desire a greater number of rides than x/nj at the zero marginal cost implied
by lift-ticket pricing. Hence there is no problem in getting the customers
to accept the quantity of rides available. 1In fact, people will queue up to
receive the rides.

Each individual cares about the outlay on skiing, ci + nj, and the number
of rides available, qj = x/nj. We assume that people do not care directly
about the time spent waiting in 1ift lines, or about how the rides are
distributed throughout the day. They would prefer shorter lift lines because
they would prefer more rides; but given a fixed number of rides, they are
indifferent between spending time outdoors in line or indoors in the lodge.
The only function of the queue is to allocate the fixed number of rides x
equally among the nj skiers.

As noted in the introduction, this extreme assumption about the welfare
cost of time spent in lift lines is a useful expository device because it
shows that queues may play a role that has nothing to do with the usual
arguments about the cost of time. We do not take the welfare implications of
this assumption literally. In section 2.3, we discuss departures from this
assumption.

Suppose that individual i considers the choice between areas j and k,
which offer the respective quantity of rides, qj = x/nj and q = x/nk. Since

the cost Ci of going skiing is the same for each area, the individual will be

indifferent between areas j and k if the gain from skiing minus the cost of



the lift ticket is the same. Therefore the equilibrium condition for people
to be indifferent between areas is
(3) ¢(qj) -y s ¢(q ) - m.

A ski area that is small relative to the total market can choose its
lift-ticket price, ﬂj, but the number of skiers, nj, adjusts to keep the net
surplus, ¢(x/nj) - "j’ equal to that offered by other areas. Competitive
behavior means that the area takes as given a reservation value for the net
surplus, not the price of the 1lift ticket. This given level of the net
surplus implies a downward-sloping number of customers, nj, as a function of
nj. The nature of the relation between nj and ﬂj can be determined by
implicit differentiation of the terms on the left side of equation (3).

Using ¢'(x/n,) = D_l(x/nJ). the result can be expressed in terms of the

J
elasticity,

i "
(4) - m, T T
J i D (x/nj)O(x/n

)
J

Since an area's costs are fixed and do not depend on nj, each area seeks
to maximize ﬂjnj, taking as given the relation between the ticket price and
the number of skiers implied by equation (4). As usual, maximization of

revenue requires that the elasticity of nj with respect to ﬂj equal -1, so

that in equilibrium

The left side of equation (5) is the amount paid per ride under
lift-ticket pricing, which we define as the effective price per ride, ﬁj:
A

6 P, =m,/q..
(6) j 379
From equation (5) it follows that



A
(7) 95 = D(PJ.)-
Each person at area j ends up with the quantity of rides gq_. that corresponds
to the effective price per ride ﬁj' Although people wait in line and face an
explicit marginal cost for rides of zero, the results are as if each skier
gets the quantity of rides that he or she would demand at an explicit market
price per ride ﬁj' These qj rides have simply been combined into a package
deal with a total cost of "j = ﬁjqj'

Given the reservation value of net surplus, each area chooses its price,
nj, in accordance with equations (8) and (5) (taking account of the condition
qj = x/nJ). Since the areas have the same capacity x and are otherwise
identical, they end up with the same values for the lift-ticket price, nj =
w, the number of customers, nj = N/J, and the effective price per ride, ﬁj =
P.

To complete the description of the equilibrium, it remains to determine
the value of the common lift-ticket price, m, or equivalently of the
effective price per ride P. We can analyze individuals' decisions to incur
the fixed cost to go skiing just as in the first model, except that the
effective price per ride P now replaces the explicit price P. (Recall from
equation (7) that people end up with the quantity of rides that they would
demand at the effective price ﬁ.) The analogue to equation (2) is now

(8) Jx = D(P)eN(P, s)
Because this condition is the same as the one that determined the price per
ride P in the ride ticket equilibrium, the effective price P takes on the

same value. Finally, equations (6) and (7) imply that the common lift-ticket

price is determined by the effective price per ride,
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(9) =m = Pq = PeD(P).

Since the equilibrium with lift-ticket pricing yields an effective price
per ride P equal to the explicit price per ride P in the first equilibrium,
skiers receive the same number of rides at the same cost in each case. The
same people end up participating, and each ski area receives the same
revenue.

The equality of nj and nj across areas arises here because all ski areas
and individuals are identical. Section 3 shows that nj and n. can vary
across areas if there are differences in skiers' preferences or in the
characteristics of ski areas. What generalizes is the result that
lift-ticket pricing can replicate the quantities and marginal valuations
generated under ride-ticket pricing. The lift-ticket equilibrium bundles the
number of rides per person from the ride-ticket equilibrium into a single
package that is sold at a price equal to the number of rides times the price
per ride.

In the longer run context where the capacity JX is variable, suppliers
have the same incentives to invest under the two systems of pricing because
the revenue generated by an additional ride corresponds in each case to the
skiers' marginal valuation of rides, D—l(q). Thus—given our assumption that
people care about the number of rides but not directly about the time spent
in line—there are no inefficiencies implied by the existence of queues,
which reflect the explicit marginal cost of zero for rides. Allocative
decisions are still based on the proper shadow price, P = D—l(q).

Although the lift-ticket equilibrium is only a repackaged form of the

original competitive equilibrium, the superficial appearances are strikingly
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different. The lift-ticket solution features quantity rationing by means of
queues, as well as ticket prices that seem to be set by firms with market
power. Although individual ski areas have no true market power, the demand
for 1lift tickets at each area is the downward-sloping curve nj(ﬂj)
characterized by equation (4), and each area maximizes revenue subject to

this curve.

2.3 Ride Tickets versus Lift Tickets

Given the assumptions so far, there is no basis for predicting which of
the two forms of pricing will prevail. They lead to identical allocations
and effective prices. Ski areas charging on a per ride basis could coexist
with others charging on a lift-ticket basis. One can readily verify that an
area could also use a combination of a lift ticket (i.e. an entry fee) and a
charge per ride.

The description of the world implicit in this model misses important
features of reality. For some aspects, such as the determination of the
price per ride P or ﬁ, these features may not be important. However, in the
choice between two otherwise equivalent pricing schemes, these features may
be decisive. The most obvious elements neglected so far are

a) the costs that must be incurred by an area to enforce
contracts—for example, to avoid the theft of rides;

b) the differences in rides—they are heterogeneous goods indexed by
the time of day and by contingencies such as breakdowns of
equipment and arrivals of skiers;

c¢) the time spent waiting in line, which is likely to have a

positive opportunity cost.
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We can conjecture what the inclusion of these features would imply.

Given the allocation of rides common to the two kinds of equilibria (and to
any mixture of these two), the form of pricing that minimizes the neglected
costs will be selected. Ride-ticket pricing will generally have higher
monitoring and set-up costs than lift-ticket pricing. Since it would be
extremely expensive to set up a complete set of markets in time and
contingency specific rides and to enforce contracts written in this form,
some amount of queuing would be expected even under pure ride pricing. On
the other hand, lift-ticket pricing imposes costs in terms of time. Relative
to a system with an extensive system of reservations, each individual must
spend more time at a ski area to achieve a given allocation of rides.
However, if the typical skier's fixed cost, c, for getting to the ski area is
large, and if waiting in line is preferred to spending time on other
available activities (aside from skiing), then this last element would be
relatively unimportant.

Queues also have the advantage that they permit an automatic form of ex
post settling-up to operate. Hence transactions can take place before all
the relevant contingencies have been realized, without the need for any ex
post payments or recontracting. Consider the operation of ride-ticket
pricing under the plausible assumption that there is uncertainty about the
number of skiers who come to a ski area on a given day. To avoid the costs
of repeated purchases of tickets throughout the day, skiers would presumably
want to purchase all of their ride tickets for the day when they arrive. But
if individuals arrive at a ski area and purchase tickets sequentially, the

price for ride tickets offered to the first purchasers of the day will
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inevitably turn out to be incorrect ex post. For example, if more skiers
than expected appear, too few ride tickets will remain for the late arrivals.
If the ski area increases the explicit price per ride for late arrivals,
early purchasers will have bought at a price that is too low; the marginal
value of the last ticket held by an early purchaser will be less than what it
could be sold for. Full efficiency would require trades between the early
and late arrivals. Under lift-ticket pricing, the price per ride adjusts

automatically. When more people show up—i.e. n, is larger—the effective

3

price per ride, ﬁj = njnj/x, increases even if ﬂj is held constant. Section
2.4 shows that in some cases this automatic price change is of exactly the
right size.

As far as we know, ski areas use only the lift-ticket form of pricing.
0i (1971) describes how Disneyland once followed a combination form of
pricing with an entry fee and a charge per ride. In contrast to the
explanation offered here, Oi interprets this scheme as evidence of market
power. Disneyland has since shifted to a pure entry fee. We take these
observations as evidence that the costs of allocating rides using ride
tickets are higher than those using entry fees. Presumably the cost of
implementing reservations and collecting ride tickets outweigh the value of
the savings in the time required to acquire a given number of rides. This

outcome is likely if the lump-sum costs of participating are large, and if

time spent at a ski area or amusement park is valued for its own sake.

2.4 Shifts in Demand
The foregoing arguments demonstrate that there may be little or no

deadweight loss associated with the use of lift-ticket pricing, rather than
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ride-ticket pricing. But the results do not yet explain why ticket prices
would be "sticky." Over the course of a season, variations in the shift
parameter s—such as those reflecting weekends and vacation periods—cause
predictable changes in demand. Lift lines vary markedly, as do prices for
accommodations, but lift-ticket prices apparently change relatively little.
The main variations seem to be discounts during periods of very low demand,
such as non-vacation weekdays or the final days of the ski season.

As one would expect, equation (8) implies that the effective price per
ride P varies in the same direction as the level of demand, with the
sensitivity depending inversely on the magnitude of the price elasticity of
the overall demand for rides (that is, of D(ﬁ)-N(ﬁ,s)). Thus, the effective
price per ride is high when the level of demand is high, and vice versa.
However, the price @ for a lift ticket does not necessarily vary in the same
direction as the level of demand. From equation (9), the effective price per
ride is P = n/q = n/x. Even with m (and x) fixed, the extra crowding
associated with the increase in n (which equals N/J) itself generates a
higher effective price per ride. The lift-ticket price @ increases when P
increases only if the associated fall in rides per person, x/n = D(B), is
less than equiproportional. Using equation (9), the effect of a change in P

on m is

(10)  dn/dP = D(F)(1 + ny 4) 2 o,

where 7y p < 0 is the elasticity of rides demanded per person with respect
to the effective price per ride. If this elasticity is less than 1 in

absolute value, 7 rises along with ﬁ and, hence, with the level of demand.

But if the elasticity is greater than 1 in absolute value, w falls when P
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increases. Finally, if the elasticity is close to -1, o shows little
sensitivity to fluctuations in demand.2 In this case competitive forces are
consistent with nearly constant lift-ticket prices, even though the times of

peak demand exhibit lines that are much longer than those during non-peak
times.

This result suggests an additional advantage to lift-ticket pricing. If
the elasticity of demand for rides per person is close to -1, it is
unnecessary to incur the "menu costs" of changing the stated price at a ski
area in response to changes in demand. The effective price per ride changes
in nearly the right way if the price of lift tickets is held constant. As
suggested in the last section, this may be important even over the course of
a day. 1If ticket sales take place sequentially as customers arrive, the cost
of changing the ticket price as information on the size of demand accumulates
includes not just a menu cost of changing signs, but also the costs of
recontracting with previous purchasers.

If demand falls to very low levels, the condition |nD’§ < 1 almost
surely applies. Since the consumption of a ski run requires a minimum amount
of a skier's time, the demand curve for rides as a function of the price has
a finite intercept equal to the maximum number of ski runs that can be taken
in a given day. As the effective price of a ski run approaches zero, the
elasticity of demand must also approach zero. In this region equation (10)

implies dn/dﬁ > 0—that is, the model predicts discounts on lift tickets

during the times of greatest slack. However, the model also suggests the

The same mechanism works for shifts in supply, Jx, although these secem less
important in the short run in the present context.
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possibility of a substantial interval—such as the comparison between a
normal weekend and the peaks during vacation periods—where lift-ticket
prices would show little or no variation with demand.

The same mechanism may explain why the explicit prices for goods such as
airline tickets and restaurants often do not vary betweeen peak and off-peak
periods. At busy times the effective amount of service diminishes because
planes and restaurants are more crowded. Thus, the price per effective unit
of service rises automatically if the explicit price is held fixed. Under
such circumstances, the results with fixed explicit prices may roughly
replicate the equilibrium where the pricé per effective unit of service
fluctuates and where customers are free to choose how much service to
purchase. In these examples the package-deal effect operates with quantity
constraints that are implicit rather than explicit, and the results do not
depend on queues per se.

Constant lift-ticket prices work exactly only if the elasticity of the
demand for rides per person equals -1. But if the menu costs or the costs of
recontracting due to sequential service are large enough to play a decisive
role in the choice of the pricing format, a two-part pricing scheme with an
entry fee and a price per ride can be implemented to avoid price changes even
when the elasticity differs from -1. This consideration does not appear to
be relevant for ski areas, where charges per ride do not seem to be used, but
may be a factor in the choice of such a scheme by some amusement parks.

Consider an amusement park with capacity X, which charges an entry fee =w
and a price per ride r. If n people visit the park and the value of r is

small (so that m is positive in equilibrium), the quantity of rides per
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person is q = x/n. As before, each park takes as given the net surplus
attained by participants, as given now by ¢(x/nj) - rx/nj - . Setting the
total differential of the net surplus to zero and equating the elasticity of
n with respect to o to -1 leads to
(11) r+ X =p"(q),
q

3

which extends equation (5). The effective price per ride is now

(12) P=r+ T-r+ T

a p(P)

Solving for w gives

(13) w= (P - r)p(P).
As before (equation (8)), the equation of total supply to total demand
determines P. Then the reaction of = to changes in P follows from equation
(13) as

1) L -pdyp + L

dp

a4 1

Consider small fluctuations in demand or supply that induce fluctuations

in the effective price ﬁ around some level ﬁ . Let n

0 ~ be the elasticity of

D,P

the demand for rides with respect to the effective price. For a given value

Fa¥
of nD ﬁ’ the price per ride r can be chosen so that —E%E nD ﬁ is equal to -1
* P 1]

will be zero when evaluated at ﬁ and

when evaluated at ﬁ = ﬁ .4 Then 0

0

Q.lo.
e >d -

3 . .

If ﬁ > r, which we assume, the quantity demanded at the explicit price r
exceeds the amount available, q = x/n. Therefore, although the explicit
price is now positive, the demanders still queue up for the available rides.

These queues typically applied at Disneyland even when ride tickets were
used.

However, the value of r would be negative if n, p were less than 1 in

absolute value.
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it will be small in a neighborhood of 30. For small fluctuations in demand
or supply, an equilibrium with constant prices r and =« will be approximately

equivalent to the conventional equilibrium with no entry fee and a

fluctuating price P per ride.

3. Elaborations of the Model

In Section 2, ski areas were identical and individuals differed only in
terms of the fixed cost ci; conditional on participation, they too were
identical. 1In this section we illustrate how the previous results change
when there are differences in characteristics of ski areas and in
individuals' preferences for ski runs. Differcnces among ski areas lead to
results that complement those above about sticky prices. The conditions that
cause lift-ticket prices to be invariant with demand also cause these prices
to be the same at areas with different characteristics. By considering two
distinct kinds of differences across areas, we are also able to illustrate
more clearly the separate roles of the homogeneity effect and the

package-deal effect.

3.1. Differences in Qualities of Ski Areas
The lift-ticket equilibrium derived above does not require separate
tickets at each area. Suppose that the ski operators set a single entry fee,
which equals the common lift-ticket price. Then skiers will sort themselves
so that each area has the same number of skiers. This sorting sets the

average return to attendance at each area to a single value, and
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simultaneously sets the marginal value of an additional ski run at each area
to a different common value. Since the areas are identical, there is no
conflict between equating marginal and average quantities. In terms of the
analogy with the classical two-roads problem, if the roads are identical and
individuals are free to choose between them, the number of vehicles on each
will be the same and there will be no efficiency loss from misallocation of
cars between the roads. Identical roads or ski areas is a special case, but
this section shows that this result generalizes to allow for at least one
kind of difference across areas.

For simplicity we now suppress the participation decision and consider a
pool of N identical skiers who have»decided to go skiing. Skiers choose
among J areas, which now have different effective capacities xj. These
differences could reflect variations in lift capacities or in lengths of ski
runs.

As in section 2, we can derive the equilibrium for this extended model
under lift-ticket pricing. All areas charge the same lift-ticket price, but
the number of skiers nJ varies one for one with the capacity xj. Each skier
receives the same amount of skiing, Xj/nj’ and this amount coincides with the
quantity that each would receive if the operators charged an explicit price
per unit of skiing. Moreover, the results would be the same if the operators
levied a single entry fee for skiing and allowed the skiers to allocate
themselves among the areas.

To reconcile this result with intuition about congestion costs, consider
the analogues to average and marginal costs. A single lift ticket combined

with free movement among areas means that the surplus per person, ¢(xj/nj),
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and hence the amount of skiing per person, xj/nj, are the same at all areas.
On the other hand, a social planner who allocates skiers across areas would
seek to maximize the total gain from skiing, E nj¢(xj/nj), subject to
2 nj = N. The first-order condition for this problem is that the expression,
¢(xj/nj) - (xj/nj)¢'(xj/nj), be the same at all areas. This condition also
implies that the amount of skiing per person is the same at all areas. Hence
the allocation of skiers coincides with the one chosen privately. Since
né(x/n) is homogeneous of degree 1 in x and n, the finding is a special case
of the result noted in the introduction; if g(x,n) is homogeneous of degree
1, then equating the average product, g/n, leads to the same answer as
equating the marginal product, g%.

This argument applies also within a given ski area or amusement park.
Ski areas may not have to charge different prices for runs of different
lengths or qualities, and amusement parks may not have to charge different
prices for rides with different durations or levels of excitement. If a ride
on a roller coaster is X times more satisfying than one on a bumper car,

lines at the two activities will adjust so that each person can consume X

times as many rides per day on a bumper car as compared to a roller coaster.

3.2 Differences in Transportation Costs
Now suppose that ski areas can differ by their costs of access. To
simplify matters, assume again that the areas have the same capacity x. Let
bj denote the cost for any skier to travel to area j; for example, bj could
depend on the distance of the area from a major urban center. As before, nj

is the lift-ticket price, qj = x/nj is the amount of skiing received by each
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person, and ﬁ. = nj/q is the effective price per ski run. By extension of

J
equation (3), an individual is indifferent between areas j and k, if

(15) ¢(qj) - ﬂj - bj = ¢(qk) -mo- bk'
As before, a change in the lift-ticket price, nj, causes the number of
skiers, nj, to adjust so that the net surplus on the left side of equation

(15) remains constant. Hence, as in equation (5), revenue maximization by

the firm implies o, = qunl(qj). Inserting this result into egqguation (15)

J
gives
(16)  #(a,) - D" (a)aqy - b, = #(q) - D (q)q - b .
J J ) J k k™ "k k
The term, ¢(qj) - D_l(qj)qj, in equation (16) is the standard measure of

consumer surplus—that is, the maximum amount that a consumer would pay for
the privilege of buying qj rides at price D-l(qj). The equation says that
this measure of consumer surplus at the two areas must differ by the

difference in the transportation costs, bj - bk' For example, suppose that

Then, since consumer surplus

area j is closer than area k, so that bj < bk.

L L . L -1
is increasing in q, equation (16) implies qj < q and hence ﬁj =D (qj) >

k i
ﬁk = D-l(qk). Thus, closer areas have higher effective prices per ski run

and are more crowded in the sense of offering fewer rides per person.

Given the determination of ﬁj' the solution for nj follows from
-1 .
w. =D (qj)qj = ﬁjD(ﬁ ). Thus, the relation between lift-ticket prices, ﬂj,

J J

and the cost of access, bj’ depends again on the elasticity of the demand for

rides per person. A lower value of b, implies a higher value of ﬁ. and hence

J

a higher value of w, if the elasticity of D(ﬁ) with respect to P is less than

J

one in magnitude (in the relevant range of demand). But a low bj implies a

low ﬂJ (along with a high p

) if the elasticity exceeds one in magnitude.

3
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Finally, if the elasticity equals -1 in some range, then lift-ticket prices
do not vary in this range across areas that differ in their costs of access.

Except when the elasticity is equal to -1, different areas must charge
different amounts for lift tickets. A single entry fee for skiing with free
choice among areas will not achieve the social optimum because the
homogeneity effect does not operate. To see why, note that the total output
from area j, net of transportation cost, is h(bj,n.) = nj¢(x/nj) - bjnj'
This function, h(bj,nj). is not homogeneous of degree one in bj and n,, and
cannot be written in the fornm, h(nj,bj) = bjf(nj) for some homogenous
function f(nj).

The next section shows that differences in individual preferences cause
lift-ticket prices to differ among areas. But to the extent that these
differences are small, the present results permit a kind of cross-sectional
check on the explanation proposed above for the stickiness of lift-ticket
prices. Many explanations can be offered for price stickiness over time, but
it is harder to explain cross-sectional stickiness. If the demand curve for
ski runs per person is close to unit elastic, then there should be less
variation in lift-ticket prices than in the number of skiers or the length of
lift lines, both in comparisons over time and among areas at a point in time.

In both dimensions, it will appear that quantities respond more than prices.

3.3. Differences in Preferences
Suppose now that the demand curves for 1lift rides, Di(P)’ differ across
individuals. These differences could reflect variations in preferences or

incomes. At a given effective price, @, the quantity of rides demanded per
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person differs from one person to another. All of the previous equilibria
with 1ift tickets used a queuing mechanism to deliver the same number of
rides to all skiers. Since this mechanism does not discriminate among pecople
with different preferences, it cannot allocate different numbers of rides per
day, Di(ﬁ). to them. To achieve an allocation that does discriminate,
different areas (or different classes of tickets at a single area) will have
to cater to different types of individuals.
To illustrate the results, suppose that there are two types of customers.
Avid skiers have the demand qA = DA(P), while less avid skiers have the
B B A B . .
demand ¢ = D (P), where ¢ > q for any value of P. The J ski areas will
A
end up dividing themselves into two types; a number J that cater to type A
B JA .
customers, and a number J = J - that serve the type B customers. Given
A B . . . . . AA
the numbers J and J , the determination of effective prices per ski run, P
AB . . . A B
and P, and lift-ticket prices, ®w and w , proceeds as before. In
particular, assuming that A-type skiers go to A-type areas, and similarly for

B-types, the conditions are

NA(ﬁA.s)OD(ﬁA) = JAx
nA = @AOD(ﬁA)

and analogously for the B's.

Ski areas can choose between proclaiming themselves as type A, with

nA . AB A B
revenue P X, or type B, with revenue P x. Hence, the numbers J and J

adjust in an equilibrium to attain ﬁA = ﬁB = ﬁ.s In that case we find

5 .

We neglect integer constraints on the solution. If the number of areas
(that serve a given locality) is large, then this problem would be
unimportant. Also, differences in capacities, XJ' make this issue less

serious.
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(17)  q° =D0%(F) > ¢° =D (P)
and

(18) nA = ﬁODA(ﬁ) > nB = QODB(ﬁ)

That is, more avid skiers receive more rides and pay higher lift-ticket

prices.6

Recall that DA(ﬁ) = x/nA and DB(ﬁ) = x/nB, where nA and nB are the number

of skiers at each type of area. Hence, equation (18) implies

B
n

A
el

l:
o P>

(19)

=

In other words, in deciding whether to charge nA or ﬂB——that is, whether to
be a type A or type B ski area—each area faces a demand in terms of numbers
of skiers, n, that has an elasticity of precisely -1 with respect to the
lift-ticket price. Correspondingly, the area's revenue, 7n, is invariant
with the choice among the w's. The areas are indifferent between charging a
high lift-ticket price and catering with short lines to the skiers who demand
lots of rides per person, or charging a low price and servicing with long
lines those who demand few rides. Note also that, as an area changes its
lift-ticket price, it also changes the entire class of skiers that choose to
patronize it. That is, a shift from nA to nB means that the nA previous

. B
customers all leave, while n~ new customers show up.

Note that type A skiers prefer qA rides at price ﬁA to qB rides at price nB

{since qA = DA(ﬁ) is the quantity demanded at the effective price ﬁ).

Similarly, type B skiers prefer qB rides at price ﬂB to qA rides at price nA.
Therefore the separating equilibrium that we propose is viable.
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The results generalize to multiple skier types, which lead to multiple
values of qk and nk, but still a single value of 3.7 A ski area's revenues
must still be invariant to its choice of type—that is, of ﬂk. Therefore,
over the set of values for nk that prevail in equilibrium, it agan follows
that each area faces a demand in terms of number of skiers, nk, that has an
elasticity of -1 with respect to nk. This equiproportional change in the
number of skiers in response to a change in the lift-ticket price does not
depend on the elasticity of the aggregate demand for lift rides or of
individuals' demands for rides per person. The result obtains whenever a
range of lift-ticket prices ﬂk prevails in equilibrium.

Except for the restriction to a finite number of individual types, and
hence a finite number of observed prices ﬂk, the lift-ticket equilibrium in
the presence of different tastes resembles the equilibrium with
differentiated products and hedonic prices as described in Rosen (1974).
Each type of ski area offers a different type of skiing experience, indexed
by qk. the number of ski runs available per skier. With identical
competitive producers, profit is invariant to the type of good offered, and
the price function m(q) traces out the structure of the demand side of the
market. In Rosen's model, producers with no market power choose the type of
good offered and the price charged from the locus described by m(q). Here,

the departure from the standard model of competitive price taking is even

However, the integer problem mentioned in n. 6 becomes more serious when
there are multiple types. 1f the number of types is much greater than the
number of ski areas, then each area will have to cater to a range of skier
types. In this case the use of lift tickets will involve an additional
welfare loss relative to an equilibrium with ride tickets.



26

sharper. Firms simply choose a price =m; quality—that is, the number of
skiers—adjusts endogenously. It is interesting to note that, until
recently, the Metro in Paris used a similar scheme to sort people by tastes.
Purchasers of first-class tickets rode in separate cars, which were not
physically different from second-class cars, except that the first-class cars
were less crowded (in equilibrium).8 Roughly speaking, individuals with a
stronger preference for ski rides or with a greater distaste for congestion

are willing to pay more for the opportunity to pay more.

4. Applications to Other Markets

In this section we apply the paradigm of ski-lift pricing to two classic
problems of congestion, the two-roads problem noted above and an open-access
fishing problem. We conclude with an application to employment contracts
with profit sharing. Our objective is to illustrate the applicability of the
approach to a variety of problems, and to use some well-known examples to
clarify the distinction between the package-deal effect and the homogeneity

effect.

4.1 Classical Congestion
Suppose that there are two roads that connect a pair of cities. Let

v(x,n) describe the speed of cars traveling on each road as a function of the

8We are told that the abolition of this vestige of the class system was one
of the promises made in the presidential campaign of Francois Mitterand.
After his election, a compromise was reached whereby this system was not
allowed to operate during the morning and evening periods of peak demand
(where it presumably would be most useful), but remained in effect during the
middle of the day.
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capacity x of each road and the number of cars n. Thus, h(x,n) = nv{x,n) is
the rate of flow of cars along each road. As Knight (1924) pointed out, if
no toll is charged for the use of either road, individuals will sort
themselves so that the average output, h(x,n)/n, is the same on the two
roads; that is, the speeds and travel times will be the same. However,
social optimality requires that the aggregate travel time summed over all
individuals be minimized, which is equivalent to maximizing the total flow,

h(xl,nl) + h(xz,n ). As noted in the introduction, the private and social

2
choices coincide if h is homogeneous of degree 1, or if it can be written in
the form, h(x,n) = xf(n), where f is homogeneous of some degree. The first
specification implies that speed depends on the relationship of capacity to
the number of cars, but is homogeneous of degree 0. Thus, as seems
reasonable, doubling the capacity of the road and the number of vehicles
leaves the speed unchanged.

The suboptimality studied by Knight relied on the assumption that one of
the roads had a capacity that was so large that the speed was independent of
the number of cars, vl(n) = a. The second road was assumed to be subject to
congestion; for example, v2(x,n) = xzf(n) for some decreasing function f.
The free-access equilibrium is then suboptimal, but no justification was
given for the different functional dependencies on capacity.

Consider now the case of J fishing ponds, with nj fishermen at pond j.
For the moment, we treat the total number of fisherman, N = % nj, as fixed.
We assume that the output of fish at pond j takes the form

_ o4
(20) yj = xj(nj)
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where Xj is the intrinsic quality of the pond and 0 £ a < 1. The condition
a = 0 corresponds to the case of a ski lift with fixed capacity, xj. The
case a > 0 means that an additional fisherman raises the total catch, but if
a < 1, the marginal and average product diminish with nj. Thus the pond is
subject to congestion; adding an additional fisherman reduces the catch of
the previous fishermen. Now suppose that each pond has the same value of
o—that is, although the xj's can vary, crowding sets in at the same
proportionate rate at each pond.

If there are no admission fees each fisherman goes to the pond that
promises the highest average product, so that in equilibrium, the average
products, xjn?_ , are equal at each pond. For fixed N, a social planner
would seek (in this static problem) to maximize the total current output of
fish, Y = Zyj. This maximization requires the marginal product, axjn?_l, to
be equal at each pond. But this condition generates the same number, nj, as
the private choices. In other words, despite the congestion problem, the
decentralized solution with no expicit prices achieves a Pareto optimal
allocation of fishermen.

The result depends on the assumption that crowding sets in at the same
proportionate rate at each pond, as implied by the form of equation (20). To
see this, relax the assumption that N is fixed, and assume instead that
fishermen have a distribution of costs for going fishing, Ci' This means
that each person has available an alternative activity—such as staying
home—where the output does not involve the same sort of crowding as prevails

at each fishing pond. In the decentralized solution a person chooses to fish

if Ci < APL, where APL is the common value of the average product of labor.
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{(This condition applies to commercial fishing and assumes no utility from
fishing, per se.) On the other hand, the social planner would assign a
person to fishing if 4 < MPL, where MPL is the common value of the marginal
product. Since MPL < APL, we get the standard result that too many people
choose to fish under the decentralized solution. However, to attain a Pareto
optimum, it is necessary to charge only a single price m to fish—i.e., a
fishing license.9 It is unnecessafy to have different prices at the various
ponds, even though they differ by their intrinsic qualities, xj. In
equilibrium the better ponds are more crowded—but to exactly the extent
required to attain the optimal allocation of fishermen.

The fishing problem has an analogue to the assignment of people to rooms
for sessions at a professional meeting. Sessions differ by their intrinsic
quality, xj. However, as more people crowd in, it becomes more difficult to
see or hear, so that the "quantity"” received per person declines with nj.

For example, if crowding sets in at the same proportionate rate at each
session, then equation (20) describes the total "output" of session j. If
the total number of participants, N, is fixed, then the decentralized choices
achieve a Pareto optimum without having explicit prices for each session. If
the number N is variable—in particular, if pcople have access to some

alternative activity that is not subject to congestion—then too many people

9 -
The price is m = APL - MPL = (1-a)xj(nj)a 1, where j is any of the ponds,
and the total number of fishermen N is the number for whom ¢, + w < APL =

i
a-1 a-1 .
xj(nj) (or c, < MPL = axj(nj) ). If there is a downward shift in the

ci‘s, then N, and hence nj, rise, which implies a decline in m. Hence with
shifts in labor supply, fishing licenses should be cheaper when the ponds are
more crowded!
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attend sessions in a decentralized equilibrium. However, the attainment of a
Pareto optimum requires only a single fee (a registration charge), and not

prices that vary across sessions in accordance with their intrinsic

qualities.

4.2 Profit Sharing

In the labor market a fully flexible wage rate corresponds to a flexible
price per lift ride. The case of a lift ticket relates to alternative
methods of labor compensation, such as profit-sharing schemes. From the
standpoint of an individual worker, the firm's total profit looks like a ski
operator's total capacity. In particular, the amount that each person gets
(share of profits or number of lift rides) varies inversely with the number
of other people who show up. (Profit per worker falls with more workers as
long as the average product of labor exceeds the marginal product.) But, as
in the ski example, competition among firms causes the parameters of the
profit-sharing rule to adjust so as to reproduce the outcomes that would
emerge under flexible wages. Further, under some conditions, it would be
satisfactory to have fixed wages and fixed parameters for the profit-sharing

formula.

Suppose that each of J identical, competitive firms has the production
function,
(21) Y = AeF(n),
where Y is output, A is a technological shift parameter, and n is the number
of workers. We assume that each worker has the same productivity and works a

fixed number of hours per day. We deal initially with a standard setting
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where the real wage rate, w, is flexible. Given this wage, profit
maximization for each firm entails
(22) AF'(n) = w.
Equation (22) determines each firm's labor demand. Aggregate labor demand is
the multiple J of the demand per firm.
The economy has a population of M potential workers who have a

distribution of reservation wages, c those with ci < w choose to work.

i’
Hence the aggregate labor supply function is
(23) N = N(w, 8)

where N < M, EE 2 0, and 6 represents factors (including wealth effects) that

1%
influence the position of the distribution of reservation wages.

The equation of aggregate labor supply to aggregate labor demand
determines the market-clearing values of the wage rate, w*, and employment,
N*. Then each firm's employment is n* = N*/J. We assume that variations
over time in wages rates and employment reflect shifts in the technological
parameter, A, or in the reservation-wage parameter, 8. (A shift in the
parameter A, to the extent that it changes wealth, could imply a simultaneous
shift in 6.)

As in the ski-lift example, the competitive equilibrium in the labor
market can be supported by pricing mechanisms other than the obvious one of
freely flexible wage rates per worker. For example, assume that the wage
rate is fixed at some value w' < w*. The wage w' parallels the explicit
price per ride, r, in the ski-lift case. Therefore, w' = 0 corresponds to

pure lift-ticket pricing, where r = 0.
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Assume now that each worker's compensation consists of the wage w' plus a
bonus B. We consider a profit-sharing scheme, similar to Weitzman (1985),
where the bonus to each worker is the fraction g of profit per worker; that

is,

n

(24) B =5 [L(")—w'].

where 0 € 8 £ 1. Therefore, a worker's total compensation, 2, is given by
(25) =B+ w' = gAF(n)/n + (1 - B)w'.

Since potential workers care only about 2, and not on its division
between B and w', each competitive firm takes as given the value of & that it
must pay. Hence, for fixed w', equation (25) determines how the quantity of
labor supplied to the firm, n, varies with the profit-sharing fraction, g.
That is, each firm can call out a value of g (along with an arbitrary w'),
and the number n adjusts to make the overall compensation, £2, equal to its
competitively determined value. This adjustment of n to a change in g
parallels the response of the number of skiers to a shift in the lift-ticket
price.

Setting the differential of 7 in equation (25) to zero leads to

dn _ F(n) - nw'/A

a B[@ - F'(n)]

(26) > 0.

The denominator is positive from the usual assumptions about the production

function—that is, the average product, AF(n)/n, exceeds the marginal
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product, AF'(n). The numerator is positive if, as we assume, w' is less than
the average product, AF(n)/n.10

Each firm chooses g to maximize profit, as given by

(1 - B)[AF(n) - nw'],
subject to the relation between n and B8 from equation (26). Setting to zero
the derivative of profit with respect to B (taking account of the response of
n from equation (26)) leads to the condition

(27) AF'(n) =
That is, labor's marginal product equals the total compensation, £, not the
explicit wage w'. Hence, with the substitution of 2 for w, the result
parallels that with a flexible wage in equation (22). In particular, labor
demand, n, depends on 2 exactly as it depended before on w.

Potential workers participate in the market if their reservation wage,
Ci' is below the total compensation f2. Therefore, the aggregate labor supply
function is now

(28) N = N(2, 8),
which parallels the flexible-wage case in equation (23), except for the
substitution of 2 for w.

Equations (27) and (28) imply that aggregate labor demand and supply
depend on £ exactly as they depended on w in the flexible-wage case.
Therefore the market-clearing value of total compensation, 0*, equals the
market-clearing flexible wage rate, w*¥. It follows that all
allocations—including employment per firm, n*, and labor-force

participation, N*¥*—coincide with those in the flexible-wage case.

10 . . .
The assumption w' < w* turns out to guarantee this condition at the

equilibrium value of n.
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Note that, although the allocations are the same, the appearances are
again quite different. Under the bonus arrangement, the explicit wage,

w' < w*¥, is rigid, but each worker also gets a share of the profits. In
deciding whether to work, each person looks only at the total compensation,
2 = w' + B, and neglects the negative effect of his participation on the
profit distributed to the other workers (which occurs because the marginal
product of labor is below the average product). This interaction parallels
the negative effect of an additional skier's participation on the rides
available for others. Nevertheless, as in our previous example for skiing,
the profit-sharing scheme reproduces the results for employment and total
compensation per worker that would arise under flexible wages.

It also follows that firms would eagerly hire more workers than are
available at the going wage w' (< w*) and the prescribed terms for sharing
profits. (This result parallels the eagerness of skiers to queue up for lift
rides.) But more workers than n* do not present themselves because the total
compensation, 2 = w'+B, would then fall below the value w*, which is the
reservation wage of the marginal worker (when total employment is N* = Jn¥*).
As with flexible wages, employment is determined so that labor’s marginal
product equals the competitive wage w*. In other words, profits are
maximized subject to the constraint that firms pay each worker a total
compensation that equals the marginal worker's reservation wage. Thus, the
outcomes are Pareto optimal despite rigid wages and the apparent
common-property problem associated with the sharing of profits. Even though
the marginal cost to the firm of an additional worker is less under the

profit-sharing arrangement, the equilibrium level of employment is the same
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as that with flexible wages. Correspondingly, the firms in each regime face
the appropriate shadow price of labor (w*), and thereby make correct
decisions with respect to investment in capital, entry and exit, etc.

All of the results so far parallel those from section 2. In particular,
they depend only on the package-deal effect. The package offered here—in
this case by a buyer of labor services—is w' of wage dollars plus B = w* -
w' of bonus dollars per unit of labor.

The discussion of amusement parks noted that, for any given elasticity of
demand, there would exist a constant entry fee and a constant price per ride
such that small shocks generated outcomes that approximated those from a
flexible price equilibrium. A similar local result holds here. There will
exist fixed values of w' and B8 such that disturbances generate outcomes that
approximate those supported by flexible prices.

There is also an interesting special case where the parameters, g and w',
can be constant in the face of global shocks to supply or demand. (This
parallels the ski-lift example where the lift-ticket price does not vary with
shocks if the elasticity of demand for rides per person equals -1.) By
substituting for 2 from equation (25), the equilibrium condition from
equation (27) is

(29) AF'(n) = BAF(n)/n + (1 - B)w'.
A change in the reservation-wage parameter, 6, leads to a change in n, which
leads generally to a shift in 8 for a given w'. Total differentiation of
equation (29) with respect to n and 8 (for fixed A and w') leads to
OF - H[AF(n) - ANF'(n) + n’F"(n)],

where H is a positive expression. This derivative will equal zero for all
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values of B and n if the production function has the Cobb-Douglas form, F(n)
= na, and if B8 is set equal to a.ll It can be verified from equation (29)
that, for this production function, the share parameter g also does not
change with a shift in the technological parameter, A. Substitution of

F(n) = n’l3 into equation (29) shows that the level of total compensation is
correct here only if w' = 0. Hence, if production is Cobb-Douglas with
labor's share 8, then the firms can pay workers a zero explicit wage, w', and
a fraction B of the profits. Under this scheme, the values of g8 and w' do
not have to change with variations in labor supply or proportional shifts to
the production function in order to support the competitive allocations.

The present results do not imply that profit sharing is superior to other
schemes that allow the bonus (and thereby total labor compensation) to move
along with w*. Also, the analysis does not suggest that a framework with
fixed wages and a flexible bonus (related, say, to profits) would be superior
to a setup with flexible wages. As was the case for ski areas, the choice of
compensation scheme must be based on elements of reality that are excluded

from this model.

11For B # 0, the general solution for dg/dn = 0 is F(n) = clnﬁ + czn, where

c1 and c2 are arbitrary constraints. However, B varies with shifts in the

parameter A unless c, = 0.
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