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Abstract

Evidence such as the Ellsberg Paradox shows that decision-makers do not assign
probabilities to all events. It is intuitive that they may differ not only in the probabili-
ties assigned to given events but also in the identity of the events to which they assign
probabilities. This paper describes a theory of probability that is fully subjective in
the sense that both the domain and the values of the probability measure are derived
from preference. The key is a formal definition of ‘subjectively unambiguous event.’

1. INTRODUCTION

1.1. Objectives

Savage’s expected utility theory is typically referred to as providing a subjective theory of
probability. That is because the probability measure underlies choice behavior. More pre-
cisely, it is derived from axioms on the preference ordering of uncertain prospects (acts defined
on a state space S) and serves as a component in the representation of that preference. We
begin by noting two critiques of the Savage model as a subjective theory of probability. Each
claims that the Savage model delivers ‘too much’ to be completely satisfactory.

The first sense in which Savage delivers too much is that his axioms deliver not only
the fact that preference is based on probabilities, but also the expected utility functional
form. Because the use of probabilities seems more basic than any particular functional form,
this aspect of the Savage theory is unattractive as a theory of probability. This critique is
due to Machina and Schmeidler and it has been addressed by these authors in [16]. They
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describe axioms that deliver probabilistically sophisticated preferences. Roughly speaking,
probabilistic sophistication entails a two-stage procedure for evaluating any act. First, the
decision-maker uses a probability measure on the state space in order to translate the act into
an induced distribution over outcomes (a lottery); and second, she uses a (not necessarily
expected) utility function defined on lotteries to evaluate the induced lottery and produce
a utility level for the act. Thus preference is based on probabilities, but in a way that does
not impose superfluous functional form restrictions.

The second critique of the Savage theory that applies also to the Machina and Schmeidler
extension is the one that motivates this paper. Both theories deliver too much in that they
derive probabilities for all measurable events. Consequently, there is an important sense in
which they fail to be subjective, as we now clarify. Both Savage and Machina-Schmeidler
assume that the decision-maker contemplates all events, that is, all subsets of the state
space are assumed admissible or measurable. Generalizations are possible whereby the class
of measurable events can be taken to be an arbitrary exogenously specified o-algebra 3.
The subjective nature of these theories is due to the fact that a probability measure p on
Y is derived from the decision-maker’s preference ordering over the domain of Y-measurable
acts. However, the domain of the measure, either 3 or the power set, is exogenous to the
model. In particular, and in stark contrast to the case for p, this domain does not depend
on preference and it is not allowed to vary with the decision-maker, except in a trivial sense.
The trivial exception is where the modeller assumes that two decision-makers a¢ and b have
different o-algebras ¥, and %, in which case the probability measures derived for a and
b will have different domains. But the fact that a and b assign probabilities to different
events is an assumption - it is not derived from the preferences or choice behavior of the two
decision-makers. The o-algebra that is appropriate for a or b is assumed to be given and
derived from other considerations.

Exogeneity of the o-algebra is not a limitation of a ‘subjective theory’ if it is believed
that decision-makers assign probabilities to all events that are relevant to the context being
modelled. In that case, the modeling context may dictate the appropriate specification for
Y, independently of preference. But choice behavior such as that exhibited in the Ellsberg
Paradox and related evidence have demonstrated that many decision-makers do not assign
probabilities to all events. In situations where some events are ‘ambiguous’, decision-makers
may not assign probabilities to those events, though the likelihoods of ‘unambiguous’ events
are represented in the standard probabilistic way. For example, in the case of the Ellsberg
urn with balls of 3 possible colours, R, B and G, where the only objective information is
that R+ B + G = 90 and R = 30, events in the class

A= {@,{R},{B,G},{R,B,G}} (1'1)

are intuitively unambiguous. Most decision-makers would presumably assign them the obvi-
ous probabilities in deciding on how to rank bets based on the colour of a ball to be drawn at
random. However, the use of probabilities for other events is inconsistent with the common
‘ambiguity averse’ preference ranking of such bets, namely a preference to bet on R (draw-
ing a red ball) rather than on B and also a preference for betting on {B, G} rather than on
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{R,G}.

On the other hand, aversion to ambiguity is not universal. Some decision-makers are
indifferent to ambiguity and behave in the non-paradoxical and fully probabilistic fashion.
The lesson we take from this is that decision-makers may differ not only in the probabilities
assigned to given events (an aspect not well illustrated by this example), but also in the
identity of the events to which they assign probabilities. Thus a subjective theory of prob-
ability should make both the domain and the values of the probability measure subjective
and based on preference.

The formulation of such a fully subjective theory of probability is our ultimate objective.
Naturally, following the choice-theoretic tradition of Savage, it is preference rather than
probability per se that is of prime importance. Thus the desired derivation of a probability
measure is as one component of a preference representation that is to apply on an agent-
specific subdomain of acts. We now clarify the nature of our contribution towards achieving
a fully subjective theory.

1.2. Contribution

First our terminology must be made more precise. Expressions such as ‘the event A is
assigned a probability’ are meaningless; a probability measure is defined primarily by addi-
tivity, a property that refers to a class (or collection) of events.! A meaningful statement is
that ‘B is a class of events where p represents the decision-maker’s likelihood relation’. Also
meaningful, and our focus in this paper, is the stronger statement ‘B is a class of events
such that preference is probabilistically sophisticated on the domain of all acts that are B-
measurable’. In general, there may be several such classes B and one might expect a fully
subjective theory to derive them all from the given preference.

The accomplishment in this paper is more modest - we identify one particular class of
events, denoted A, whose elements are called (subjectively) unambiguous events. Then we
show (Theorem 5.2) that the decision-maker is probabilistically sophisticated on the domain
of unambiguous (A-measurable) acts, given suitable axioms on preference. This representa-
tion result constitutes a contribution towards a fully subjective theory of probability, because
both the domain A of the decision-maker’s probability measure and the values assigned by
the measure to events in A are derived from preference.

The definition of unambiguous events is the key to our model and constitutes a separate
contribution. Thus some elaboration seems in order. Roughly speaking, a satisfactory formal
definition must answer the question “which behavior or preference rankings reveal that the
decision-maker views a given event as ‘ambiguous’?” The Ellsberg urn with three colours
illustrates our approach. The typical choices described earlier may be expressed in the form

R >;B and RUG <, BUG,

where >, may be read ‘would rather bet on’. Thus the preference to bet on red rather

ITypically, that class is taken to be an algebra or c-algebra. We adopt the more neutral term ‘class’
because a different mathematical structure will be relevant here, as explained shortly.
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than blue is reversed if both winning events are expanded to include green. We view such
a reversal as the behavioral manifestation of the intuitively ambiguous nature of the event
G (drawing a green ball) and we use it as the basis for our definition of ambiguity in a
general setting. In other words, we define ambiguity by a suitable lack of separability in
preference and thus the collection A consists of those events that satisfy a suitable form of
separability. The intuitive appeal of our definition, elaborated upon below, justifies singling
out A amongst all the classes of events B where probabilistic sophistication prevails.

‘Ambiguity’ is a common word in informal discourse and is used in many different senses.
Our definition attempts to capture one of these - imprecision regarding likelihood as illus-
trated by the Ellsberg Paradox. Alternatively, the word ambiguous is sometimes used when
referring to an event that is in some sense not fully describable. To illustrate, consider the
case where one of the states of the world is the catch-all ‘none of the above’ as in [14].
The decision-maker may not have a clear picture of the (sub-)contingencies underlying the
catch-all state and thus it might be called ambiguous. However, if she can assign a precise
probability to the catch-all state, because she can do so for the other states, then it would
be subjectively unambiguous in our sense. More precisely, even without understanding the
internal composition of the catch-all state, she might plausibly exhibit the behavior that we
use to define ‘unambiguous’. The behavior that corresponds intuitively to the noted incom-
plete understanding is the subject of the literature on ‘missing states’, in which [14] is the
seminal article.

1.3. A By-Product

Typically, probability theory posits that any probability measure is defined on an algebra or
o-algebra, constructs that seem natural from a mathematical point of view. In a fully subjec-
tive theory, the domain A of the subjective probability measure, including its mathematical
properties, are derived. This permits the appropriateness of the standard assumptions to
be evaluated from a decision-theoretic point of view. This argument is due to Zhang [26],
whose major finding in this regard we proceed to outline.

The major point is that A is typically not a o-algebra or even an algebra. Moreover, at
an intuitive level, while the class of unambiguous events is naturally taken to be closed with
respect to complements and disjoint unions, it may not be closed with respect to intersections.
This point may be illustrated by borrowing Zhang’s example of an Ellsberg-type urn with 4
possible colours - R, B, G and W. Suppose that the only objective information is that the
total number of balls is 100 and that R + B = G + B = 50. Then it is intuitive that the
class of unambiguous events is

A= {Sa 07 {BvR}a {B,G}, {G7W}7 {RaW}} (1'2)

Observe that A fails to be an algebra, because while {B, R} and {B,G} are unambiguous,
their intersection {B} is not. As pointed out by Zhang, the appropriate mathematical
structure for A is a A-system (defined below), also sometimes called a Dynkin system.

For this paper, the fact that we cannot take A to be an algebra complicates the derivation
of a probability measure on A and, in particular, prevents us from simply invoking existing
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results from [20], [9] and [16]. The arguments in these studies exploit the fact that the
relevant class of events is closed with respect to intersections. We rely instead on a recent
representation result in [27] for qualitative probabilities on \-systems.

1.4. A More Applied Perspective

To this point, we have emphasized the importance for decision theory of the construction of
a fully subjective theory of probability. However, there exists also more applied motivation
for this paper.

The importance of the Ellsberg Paradox is due in part to the feeling that the phenomena
of ambiguity and ambiguity aversion that it illustrates are likely important in many standard
economic contexts and not merely in experimental settings. For example, it is intuitive that
ambiguity may be important, perhaps as important as risk, for explaining behavior in asset
markets. Clearly, formal investigation of this hypothesis requires a sound formal definition of
ambiguity. We hope that our definition will serve this purpose. From this applied perspective,
our representation result (Theorem 5.2) can be viewed as a form of confirmation that our
definition is natural or appealing.

This seems an appropriate place to comment on the meaning of ‘ambiguity aversion’.
In the same way that risk aversion is defined by reference to riskless prospects or lotteries,
any definition of ambiguity aversion requires the prior identification of unambiguous acts
and events. In [6], one of us defined the notion of aversion to ambiguity (or uncertainty)
beginning with an exogenously specified class of unambiguous events. It is straightforward
to adapt the approach in [6] and to employ subjectively unambiguous events as the reference
class used to define ambiguity aversion (see the concluding section for further details). In
this way, this paper delivers also a definition of ambiguity aversion.?

See [4] for preliminary results regarding the effects of ambiguity aversion thus defined
on asset returns in a representative-agent model. Other studies ([7] is one example) also
claim to have derived effects of ambiguity aversion on asset returns, but, as argued in [6],
such claims are suspect because they are not based on a satisfactory definition of ambiguity
aversion.

1.5. Related Literature

Further comparison with the Machina-Schmeidler analysis seems worthwhile. If their axioms
are imposed, then all events are subjectively unambiguous. Consequently, our Theorem 5.2
extends their main result by dropping the requirement that all events be unambiguous.® As
a further consequence, only our model is consistent with Ellsberg-type behavior; events that
are deemed ambiguous by the decision-maker are excluded from the domain 4 and are not
necessarily assigned probabilities, removing the source of the paradox.

2Schmeidler [22] proposes a definition of ambiguity aversion for the case where preference is defined over
two-stage Anscombe-Aumann acts (see [1]) rather than merely over Savage-style acts as here.

3A qualification is that our theorem delivers a countably additive probability measure, while theirs deals
with the more general class of finitely additive subjective priors.



Several papers have studied ambiguity. Zhang [26] proposes a definition of ‘subjectively
unambiguous’ that is closely related to the definition proposed here. A comparison is pro-
vided in Section 3.4.

The subjective nature of unambiguous events distinguishes our model from [10] and [6],
where ambiguity is taken as a primitive. Here, in contrast, preference is the only primitive.
The class of ambiguous events employed in [19] (and [13]) is ‘subjective’ in the sense that the
authors require that preference satisfy Savage’s Sure-Thing-Principle on the corresponding
domain of acts. However, this requirement does not pin down a unique class of events, in
contrast to the uniqueness of our class A. Put another way, only our definition is explicit
and constructive.

Ghirardato and Marinacci [11] define ambiguity in terms of preference in the case where
the latter conforms to Choquet expected utility theory. The latter limitation is unattractive
for the reason given in the next paragraph. If for the sake of further comparison one restricts
attention to the Choquet expected utility framework, then their definition differs from ours.
Rather than provide a detailed comparison of the two approaches (see, however, Section
3.6), we prefer to acknowledge that the intuitive appeal of any definition of ‘subjectively
unambiguous’ is undoubtedly subjective, and to emphasize instead the ‘practical’ case for
our definition - it delivers a representation result (Theorem 5.2). The latter is a major
contribution because, as we have argued, it constitutes a first step towards a fully subjective
theory of probability. (There is no parallel result in [11].) Keeping in mind the ultimate
objective of deriving a probability measure on the class A of subjectively unambiguous
events, it seems that a liberal definition of ‘unambiguous’ is advantageous. Our definition
should be viewed from this perspective.

Finally, there exists an alternative response to evidence such as the Ellsberg Paradox
that, one might argue, also delivers a fully subjective theory of probability. Schmeidler
[22] and Gilboa and Schmeidler [12] respond to evidence that decision-makers’ beliefs may
not be representable by probabilities by proposing models in which beliefs are represented
by more general mathematical constructs - ‘non-additive probabilities’ or capacities in the
former paper and sets of priors in the latter. In the case of non-additive probabilities, one
might proceed to identify a subdomain of events where additivity prevails as the class of
subjectively unambiguous events. Similarly, in the case of a set of priors, a subdomain of
events where all priors in the set agree provides a natural candidate as the class of subjectively
unambiguous events. However, in either case, the resulting theory of subjective probability
would deliver ‘too much’ in the sense of the first critique of the Savage model noted at
the start of the paper. They would deliver specific models of preference in addition to a
class of unambiguous events to which the decision-maker assigns probabilities. The use of
probabilities seems more basic and is the sole focus of our model. Put another way, just as
risk and risk aversion are meaningful notions even outside the expected utility framework (see
[25] and [5], for example), it is desirable to have definitions of ambiguity and subsequently
of ambiguity aversion that are not tied to any specific model of preference.



1.6. Outline

The paper proceeds as follows. Next we define A-systems and some notation. Then Section
3 introduces our key definition of an unambiguous event. The remainder of the paper can
be viewed as an attempt to justify the definition. In particular, the definition is examined
in a number of Ellsberg-type settings and also within the context of some specific models of
preference. Some preference axioms are described in Section 4 and our main result (Theorem
5.2) follows in Section 5. Section 6 concludes with suggestions for further research. Most
proofs are relegated to appendices.

2. PRELIMINARIES

Let (S, X) be a measurable space where S is the set of states and ¥ is a o-algebra. All events
in this paper are assumed to lie in ¥; we repeat this explicitly below only on occasion.
Say that a nonempty class of subsets A C X of S is a A—system if

A1 S e A
A2 Aec A= A°€ A, and
A3 AnEA,n:1,2,... al’ldAiﬂAj:@, VZ%]@UnAnEA

This definition and terminology appear in [3, p. 36]. A A-system A is closed with respect
to complements and countable disjoint unions. The intuition for these properties is clear if
we think of A as a class of events to which the decision-maker attaches probabilities. If
she can assign a probability to event A, then the complementary probability is naturally
assigned to A°. Similarly, if she can assign probabilities to each of the disjoint events A and
B, then the sum of these probabilities is naturally assigned to AU B. On the other hand,
there is no such intuition supporting closure with respect to intersections, or equivalently,
with respect to arbitrary unions. Lack of closure with respect to intersections differentiates
A-systems from algebras or o-algebras. As illustrated by the example of an Ellsberg-type
urn with 4 colours, A-systems are more appropriate for modeling families of ‘unambiguous’
events.

We have the following equivalent definition [3, p. 43]:4

Lemma 2.1. A nonempty class of subsets A C ¥ of § is a A-system if and only if
A1 0,8 e A;

A2 A, Be Aand AC B= B\A € A4; and

ANy A,eAdand A, C A1, n=12,...,=— U,A, € A.

4Collections of sets satisfying the following conditions are frequently called alternatively Dynkin systems
or d-systems [24, p. 193].



Although A is not an algebra, a probability measure can still be defined on .A. Say that
p: A— [0, 1] is a (finitely additive) probability measure on A if:
P.1 p(0) =0, p(S) =1; and
P2 p(AUB) =p(A)+p(B),YA,Be A, ANB = .
Countable additivity of p is defined in the usual way and will be stated explicitly where
needed. Given a probability measure p on A, call p conver-ranged if for all A € A and
0 <7 <1, there exists B C A, B € A, such that p(B) = rp(4).5
As in Savage, we assume a set of outcomes X. Prospects are modelled via (simple) acts,

Y-measurable maps from .S to X having finite range. The set of acts is F = { 9,0}
Given a A-system A, define F** by

Fut ={f € F: fis A-measurable}, (2.1)
where f is A-measurable if {s € S: f(s) € X} € A for any subset X of X. Thinking of A

as the set of unambiguous events, F“* is naturally termed the set of unambiguous acts.

3. UNAMBIGUOUS EVENTS

3.1. Definition

The primitives (5, %) and X are defined as above. The decision-maker has a preference order
> on the set of acts . Unambiguous events are now defined from the perspective of .

Definition 3.1. An event T is unambiguous if: (a) For all disjoint subevents A, B of T*,
acts h and outcomes z*, z, z, 2’ € X,

z* ifse A T ifse A
z ifse B o x* ifse B .
h(s) ifs e T\(AU B) - h(s) ifse T°\(AUB)
z ifseT z ifseT
(3.1)
z* ifse A x ifse A
T ifse B . x* ifseB '
h(s) ifse€ T°\(AU B) = h(s) ifseT\(AUB) |’

z ifseT 2 ifseT

and (b) The condition obtained if T is everywhere replaced by T° in (a) is also satisfied.
Otherwise, T' is ambiguous.

SWhen A is a o-algebra and p is countably additive, this is equivalent to non-atomicity [18, pp. 142-3].



The set of unambiguous events is denoted A. It is nonempty because ) and S are unam-
biguous. Observe that the defining invariance condition is required to be satisfied even if A
or B is empty.

Turn to interpretation, assuming that z* > z. The first two acts being compared yield
identical outcomes if the true state lies in (A U B)°. Thus the comparison is between ‘bets
conditional on (AU B)’ with stakes z* and z and the outcomes shown for (A U B)¢. The
indicated ranking reveals that the decision-maker views A as conditionally more likely than
B. Suppose now that the outcome on event 7 is changed from z to /. If T is ‘unambiguous’,
then this conditional likelihood ranking should not be affected because ‘unambiguous’ means
or at least entails such separability or invariance. Constancy of acts on T is vital for this
intuition. It is T" in its entirety that is unambiguous and this does not imply anything about
subsets.® This leads naturally to the restriction to acts that are constant on 7". Finally, both
T and T° should satisfy such invariance because intuitively an event is unambiguous if and
only if its complement is unambiguous.

For the exclusive purpose of the further interpretation offered in the next two paragraphs,
suppose temporarily that Savage’s axiom P4 is satisfied, that is, for all outcomes z* > z and
for all events A and B, if

¢ ifse A . z* ifseB

x ifseA® )=\ =z ifseB° )’
then the same ranking obtains if the stakes of these bets are changed to y* and y, for any
y* > y. This axiom delivers a (complete and transitive) likelihood relation =, on events such
that A >, B if the decision-maker would rather bet on A than on B.

Given that P4 is satisfied, it is immediate that if T is unambiguous, then for all A and
B such that AUB = T*,

A=yB <= AUT =, BUT. (3.2)

This is shown by taking z = z and 2/ = z* in (3.1). Another intuitive implication of the
formal definition is that the likelihood relation >, satisfies the following additivity property
when restricted to A: For all A, B and C in A, with ANC = BNC = §,

BEZA@BUC tgAUO. (33)

(This is proven as part of the proof of Theorem C.3.)

On the other hand, some readers may feel that our definition does not capture all intuitive
aspects of ‘unambiguous.” For example, if A and B are unambiguous, then it might be
expected that (3.3) should be satisfied for all (not necessarily unambiguous) C' disjoint from
A U B; this is not the case given our definition. We do not claim to have captured the
complete essence of ‘unambiguous’. The argument that we offer for our definition is first

6This feature of our definition makes it clear that it has nothing to do with the sort of ‘ambiguity’ asso-
ciated with incomplete understanding of the states comprising T , as discussed in Section 1.2 in connection
with the literature on missing states.



that it captures some intuition and second that it helps to deliver a novel representation
theorem whose importance was argued in the introduction. It remains to be seen whether
alternative definitions will be similarly useful.

Before turning to examples, observe that null events are unambiguous, where, as in
Savage, say that an event 7' C S is null if for all acts f, g, ¢’ € F,

(9 e )~ (09 mer)

Lemma 3.2. If T is null, then T' is unambiguous.

Proof.  Condition (3.1) is satisfied because changing the outcome on T from z to 2 is a
matter of indifference by the nullity of 7. When T is substituted for 7" in (3.1), each weak
preference ranking is necessarily indifference. W

Finally, while we have emphasized the connection, albeit imperfect, between ‘unambigu-
ous’ and ‘having probability’, the example of state-dependent-expected-utility shows that
such a connection is not delivered by our definition of unambiguous without further restric-
tions. Let the utility function U be given by

Uf) = [, ulhdp,

for a suitable collection {u,} of state-dependent vNM indices and some probability measure
p. It follows immediately from the additive separability across states that all events are
unambiguous. However, there is no meaningful sense in which U is based on probabilities. It
is well-known that when the vNM index varies with the state, then the probability measure
p is not unique (for example, the identical U is delivered by vs(-) = asus(-) and dg =
a; ! dp)and its behavioral significance is unclear. We succeed later in delivering a unique
probability measure for unambiguous events only by excluding such state-dependence. The
preceding demonstrates that, in general, being unambiguous is more basic than “having
probability”, a distinction that will be illustrated further in Section 3.7.

3.2. Ellsberg Settings with a Single Urn

First, consider a state space consisting of only two points s; and s, corresponding to a single
Ellsberg urn with balls having two possible colours. If § <, {s;} <; S, ¢ = 1,2, then both
singleton sets are necessarily unambiguous.” Support for this designation is provided by the
fact that any such likelihood relation may be represented by a probability measure; take any
probability measure p such that p(s1) < (>)1/2 if {s1} <¢ (>¢) {s2}-

"This presumes Savage’s monotonicity axiom P3: For all non-null events E, acts f and outcomes z and
y, © > y if and only if the act (z if E; f(s) if s € E°) is weakly preferred to (y if E; f(s) if s € E°).
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Turn to the case of an urn with balls of 4 possible colours, as outlined in the introduction.®
The state space is

S ={B,R,G, W},

where § = 100 and B+ R = B + G = 50. The intuitive A-system A of unambiguous
events is described in (1.2). There is a natural probability measure p on A and it is reasonable
to expect that a decision-maker would base choice on p when dealing with acts in F**. In
particular, she might conform to expected utility theory there, with utility function

U(f) = [uf)dp, feFe

for some vNM index u.

For the ranking of other acts, the following seems plausible: Though the decision-maker
knows the probabilities of events in A, no other information is available. Thus any measure
in the set

P ={m: m extends p from A to X}, (3.4)

is admissible. Suppose that this set of measures is used as described in the multiple-priors
model [12]; that is, for some vNM index u, the utility of an act is computed by

U(f) = min /5 u(f) dm. (3.5)

meP

Then the class of events that are subjectively unambiguous in the sense of our formal
definition coincides with A: Refer back to (3.4) and (3.5). For any z* = =z,

¢ ifs=W z* ifs=R

z ifs=R x ifs=W h .
r ifs=G || z ifs=G when z =,
z ifs=2~B z ifs=RB

but indifference becomes ‘>’ when z is set equal to z*. This proves that both {B} and its
complement are ambiguous. Similarly for other singleton sets and their complements. To
see that {R, G} is ambiguous, observe that

zt ifse{B,W}\ (= ifse{BW} when » — o
z ifse{R,G} z ifse€{R,G} -

but the first act is strictly preferred when z = z*. This violates the defining property

(3.1), taking A = {B, W} and B = (. Finally, verify that each event identified in (1.2) as

intuitively unambiguous is also unambiguous in the formal sense.

8The case of three colours may be discussed similarly. For a suitable specification of preference, A
coincides with the intuitive class (1.1).
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3.3. Global Probabilistic Sophistication

If “probabilities are assigned to all events”, then all events should be unambiguous. Machina
and Schmeidler give precise meaning to the expression in quotation marks. The precise
definition of their class of probabilistically sophisticated preferences can be found in [16].
(See also Section 5 below, where we define the probabilistic sophistication of preference
over any suitable domain of acts. The special case where that domain is the set of all acts
F is the notion in [16]; it is occasionally distinguished here terminologically by the added
adjective ‘global’.) For the moment it suffices to note the following central axiom underlying
probabilistic sophistication:

Axiom P4* (Strong Comparative Probability): For all disjoint events A and B, out-
comes z* > z and y* > y, and acts g and h,

z* ifseA z ifse A
T ifse B - z* ifseB =
g(s) ifs¢ AUB g(s) ifs¢ AUB
(3.6)
y* ifseA Y ifse A
Y itse B >~ y* ifseB
h(s) ifs¢ AUB his) fs¢ AUB

It is immediate that if preference satisfies P4*, then all events (in X) are unambiguous. The
converse is also true if Savage’s P4 is assumed.” We view these results as supportive of
our definition. The former is noteworthy also because it ensures that our representation
result Theorem 5.2 extends the main result in [16] (modulo the qualification mentioned in
the introduction).

3.4. Linearly Unambiguous

The preceding is useful also for understanding why an alternative seemingly natural definition
for ‘unambiguous’ was not adopted, thereby providing further perspective on our chosen
definition. We motivated our definition in part by the suggestion that a necessary condition
for an event to be unambiguous is that it be ‘separable’ from events in its complement.
The following alternative definition embodies a stronger form of separability and therefore
warrants some attention:

9We could obtain the unqualified equivalence between P4* and ‘all events are unambiguous’ if we strength-
ened our definition slightly to require invariance in (3.1) also if the outcomes z* and z are replaced by y* and
y, where y* > y. Our results below remain valid with this alternative definition. The distinction between
the two alternative definitions of unambiguous seems to us to be a matter of taste.
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Definition 3.3. An event T' is linearly unambiguous if: (a) For all acts f' and f and all
outcomes z and 2/,

(f’(s) ifseTe > . ( f(s) ifs ET“) N (3.7)

z ifseT z ifseT

z ifseT z ifseT |’

(f’(s) ifseTC>t<f(s) jfngC),

and (b) The condition obtained if T is everywhere replaced by T° in (a) is also satisfied.
Otherwise, say that T is linearly ambiguous.

It is apparent that if 7" is linearly unambiguous, then it is also unambiguous. The former
is a stronger property because the indicated invariance is required for all acts f’ and f and
not just for the subclass of ‘conditional binary acts’ as in (3.1). The economic significance
of this difference is described below and is similar to the discussion in [16, Section 4.2]. In
any event, it is apparent that linear ambiguity embodies a stronger form of separability than
does ambiguity. So why not use it as the key notion?

One answer is that (3.7) is too demanding to correspond to the intuitive notion of am-
biguity. The invariance required by (3.7) may be violated because the decision-maker views
outcomes in different states as complementary or substitutable for reasons that have nothing
to do with ambiguity. For example, she may be probabilistically sophisticated, thus assigning
probabilities to all events and translating any act into the induced lottery over outcomes,
but then she might evaluate the lottery by a risk-preference utility functional that is not
linear in probabilities (violating the Independence Axiom). Decision-makers who behave as
in the Allais Paradox are of this sort. Many events would be linearly ambiguous for such
decision-makers, though it seems intuitively that ambiguity has nothing to do with their
preferences. In contrast, for such (probabilistically sophisticated) decision-makers all events
are unambiguous, as we have just observed. Roughly speaking, our formal definition of am-
biguity relates to behavior in the Ellsberg Paradox but not the Allais Paradox, while linear
ambiguity confounds the two.1°

A second (related) answer is that the existence of probabilistically sophisticated non-
expected utility maximizers is at least a logical possibility if not an empirical fact. Such
preferences are based on probabilities. A theory of subjective probability is richer if it
includes them.

That is not to dispute the potential usefulness of the notion of linear ambiguity. Zhang
[26], who originated the notion, shows that it can help to provide a fully subjective expected
utility theory, in the sense of the introduction (see also Section 6). The linearity of the
expected utility function explains our choice of terminology.

OReaders who attach little importance to the Allais Paradox may feel that such a view would justify
using (3.7) in place of (3.1). We feel that it argues for imposing a form of the sure-thing principle on the
subdomain of unambiguous acts, rather than for changing the meaning of unambiguous.

13



3.5. ‘Unambiguous’ and Updating

We observed in the introduction that one would expect the set of unambiguous events to be
closed with respect to complements and disjoint unions. Closure with respect to complements
is built into the definition of \A. For disjoint unions, it is readily shown that if 7} and T are
disjoint and each satisfies (3.1), then so does 77 U Ty. This does not prove that the union is
in A, because that requires also the appropriate form of (3.1) for (77 UT5)¢; to prove this we
employ a mild axiom as described in Lemma 5.1 below. For the next intuitive argument, we
anticipate the fact that A will shortly be shown to be a A-system.

Examination of updating is supportive of our definition. Imagine that prior to the even-
tual realization of the true state of the world, there is an intermediate stage at which the
decision-maker learns that event 7' is true. At that point the relevant prospects are acts over
T'. Denote the set of such acts by Fr and by = the updated preference order over Fr. We
assume that updating takes the form prescribed by Machina [15]. Thus assume that >r is
defined by: For all f/, f € Fr,

rese (09 WiEr)=(M) WER) 6o

Here h is the foregone unrealized alternative, an act over T°. The updated order depends
on h, but this dependence is suppressed in the notation.

We can now ask the following: Suppose that 7" and R C T" are unambiguous with respect
to the initial order ». Then is R necessarily unambiguous from the perspective of the
updated order »=77 (The latter expression is defined in the obvious way, using T as the new
state space.) Intuition suggests a positive answer and that is the case for our definition.

Lemma 3.4. Suppose that A is a A-system (see Lemma 5.1). Let T and R C T be in A,
that is, unambiguous with respect to the initial order »-. If preference is updated according
to (3.8), then R is unambiguous with respect to »r.

The proof is elementary. The added hypothesis that A is a A-system is used only to show
that T\ R = (RUT®)¢ is also in A.

3.6. Multiple-Priors and Choquet Expected Utility

Here we examine the nature of unambiguous events when preference is restricted to lie in the
multiple-priors class [12] or in the Choquet expected utility (CEU) class [22]. In the context
of these models, the functional forms for utility suggest definitions for ‘unambiguous’ that
seem ‘natural’ on purely formal grounds. We compare these to our definition and find that,
in general, they differ from our behaviorally based definition.

A multiple-priors preference order > is represented by the utility function

U(f) = min [ u(f)dm,

meP
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where u : X — R' and where P is a convex (and suitably closed) set of probability
measures on (S,%). Say that all measures in P agree on an event T if m(T) = m/(T) for
all m and m’ in P. One is tempted to identify unambiguous events with those events where
all measures in P agree. This identification is justified in part.

Lemma 3.5. The event T is unambiguous if all measures in the set P of priors agree on T .

Proof. This follows from

U(f) = min {u(a”) m(4) + u(z) m(B) +

h)d
min Loy BN + aru(z),

where f is the first act appearing in (3.1) and g7 is the agreed probability of 7. MW

Thus agreement on T' of all measures in P is sufficient for 7' to be unambiguous. However,
it is not necessary.!! The reader may find this nonequivalence puzzling and perhaps even
troubling. However, the class of events where all measures in P agree is an algebra and thus
should not be expected to coincide with A, which is only a A-system. Second, we claim that
the ‘intuition’ that suggests that unambiguous events are those where all measures agree
is based on a necessarily superficial examination of the multiple-priors functional form. A
serious study of ambiguity must be based on its behavioral manifestations. Naturally, our
definition of ambiguity is expressed in terms of behavior. The behavioral characterization of
the assumption that all measures in P agree on 7' has not been discussed in the literature,
but it can be shown that agreement on 7' is equivalent to 1" being linearly unambiguous. We
conclude in light of the discussion in Section 3.4 that measures in P may disagree on T for
reasons that have nothing to do with ambiguity. There remains the question of characterizing
‘subjectively unambiguous’, in our sense, for the multiple priors model. Unfortunately, we
have not progressed beyond the stated lemma.

Turn to the CEU model. Let preference be represented by U“, where'?

uess(f) = [ ul(f)dv.

Here v : X — [0, 1] is a capacity and v : X — R*!. It is convenient to restrict attention to
the special case where u(X') has nonempty interior.
The CEU and multiple-priors models overlap. Say that v is convez if

v(AUB)+v(ANB) > v(A) +v(B),

1 Take the capacity defined in (3.10) below with ¢ strictly convex. Then v is convex and thus the Choquet
expected utility function is also a member of the multiple-priors class with P equal to the core of v. Apply
(3.11).

12, is a capacity if it maps ¥ into [0,1], »(E') > v(E) whenever E' D E, v(0) = 0 and v(5) = 1.
The indicated integral is a Choquet integral and equals B u; [V(Uf_;Ej) — v(Ul_; 1 E)] if By = {s:
w(f(s)) = v} and uy < ... < Up.
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for all events A and B. The utility function U** is also in the multiple-priors class if and
only if v is convex, in which case the relevant set of priors is core(v). The core is defined as
in co-operative game theory, that is, as the set of all finitely additive probability measures p
on S satisfying

p(A) > v(A), forall ACS.

A property of capacities that is weaker than convexity is exactness (see [21]): v is exact if

v(A) = min( : m(A), forall ACS. (3.9)
mecore(v
T'wo special cases of CEU preferences merit separate mention because they lie at opposite
extremes in terms of the extent of subjective ambiguity that they reflect. The first has

v = ¢(p), (3.10)

for some probability measure p and some strictly increasing ¢ : [0,1] — [0, 1]. The result-
ing preference order is probabilistically sophisticated (axiom P4* of Section 3.3 is readily
verified) and thus all events in ¥ are unambiguous in this case, that is, A = ¥. Informal
confirmation that this preference order does not reflect any concern with ambiguity is derived
from the observation that it corresponds to the rank-dependent-expected-utility model that
has been studied in the theory of preference over lotteries or (purely) risky prospects.

At the other extreme, suppose the capacity is given by

{ 1 ifA=S

0 otherwise,

v(A) =

which is often described as modeling complete ignorance. Justification for this name is
provided by noting that the implied utility function U satisfies U(f) = infses u(f(s)); as
well, the core of v is the set of all probability measures on S. It is intuitive that complete
ignorance should mean that all events other than @ and S be subjectively ambiguous. That
is indeed the case - it is readily verified that A = {0, S} for this preference order.

For general capacities, A is intermediate between the above extremes and its characteri-
zation for a given v is of interest. On purely formal (or mechanical) grounds, thinking of the
capacity as analogous to a probability measure, albeit non-additive, each of the following
classes of events seems plausible as a conjecture for how to characterize unambiguous events:

Ay ={TCcS:v(T+A) =vI+vAforall ACT},
A1 = {T CS: vI'+vT°=1} and
AZ = mmEcore(y) {A CS:mA= VA}

The first two classes may seem natural because they capture forms of additivity of the

capacity. The class Ay consists of those events on which all measures in the core of v agree,

which also seems to reflect a lack of ambiguity, as discussed in the multiple-priors context.
In general, Ay C A;. When v is exact, these three sets coincide.!®

13This lemma appears in [11].
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Lemma 3.6. If v is exact, then Ay = A; = A,.

However, none of the above classes coincides with the class A of subjectively unambiguous
events. This is illustrated starkly by taking v to be a distortion of a probability measure as
in (3.10), with the distortion ¢ being strictly convex. Then'*

.A = ¥ and .A() = .Al = AQ = {@,S} (311)

Once again, we would argue that a sensible comparison of these alternative specifications
of the class of unambiguous events must be based on behavioral foundations. For example,
Zhang [26] shows that if A is closed with respect to complements, then it coincides with
the class of linearly unambiguous events. We have already expressed our views on the
relative merits of linear (un)ambiguity. Behavioral foundations for A; are provided in [11].
Ghirardato and Marinacci provide a detailed discussion of the differences between their
approach and ours. Under exactness, the above lemma shows that their definition coincides
with Zhang’s, namely, linear (un)ambiguity. Thus anyone convinced by our critique in
Section 3.4 should be reluctant to accept the Ghirardato-Marinacci definition.

Some connections exist, however, between the alternative classes of events. The next
result is immediate given Lemma 3.6 and the cited result from [26].

Lemma 3.7. If A is closed with respect to complements, then Ay C A. If v is exact, then
.A1 C A.

Later (Corollary 5.4) we show that, under additional assumptions, all of the above classes
coincide.
Finally, we provide a characterization of A (see Appendix A for a proof).!?

Lemma 3.8. T' is unambiguous if and only if: For all pairwise disjoint events A, B, C' and
D, each disjoint from T,

v(AUD)>v(BUD) <= v(AUDUT) > v(BUDUT); and (3.12)

if (W(AUD)—-v(BUD)) w(AUDUC)—-v(BUDUC(C)) <0, then (3.13)
v(AUD)—-v(BUD) = v(AUDUT) — v(BUDUT) and (3.14)
v(AUDUC)—v(BUDUC) =v(AUDUCUT)-v(BUDUCUT); (3.15)

and the above conditions are satisfied also by T°.

14Under these assumptions, v is a convex capacity, hence exact.

15The characterizing conditions on the capacity may appear ugly; they are much more complex than those
used to define Ay and Ay, for example. On the other hand, these conditions are well-founded, with behavioral
counterpart given by (3.1), and the latter is highly interpretable and (in our view) intuitively appealing.
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If the ‘reversal’ in (3.13) never occurs, then v is (almost) a qualitative probability within 7°¢.16
In that case, the ordinal condition (3.12) alone corresponds to “I" unambiguous’. However,
when v fails to be a qualitative probability within 7°, then ‘T’ unambiguous’ requires that
the cardinal conditions in (3.14) and (3.15) obtain.

Observe that the above conditions do not involve u, which therefore has nothing to do
with ambiguity.

3.7. A Two-Urn Example

We conclude our explication of the definition of ‘subjectively unambiguous’ with an example
that illustrates a conceptual distinction between ‘having probability’ and ‘being unambigu-
ous’. In our model, unambiguous events have probabilities, but the reverse is false and
should not be expected to hold. In addition, the example illustrates further how the con-
dition defining ‘subjectively unambiguous’ may be checked in concrete settings. The result
bolsters intuitive support for our definition.

A slight variation of Ellsberg’s two-urn experiment illustrates the noted distinction.!” Let
Sy be an urn containing 90 balls that are either red, blue or green in unknown proportions
and 57 an urn containing 30 balls of each colour. Typically, S; and Sy are referred to as
‘unambiguous’ and ‘ambiguous’ urns respectively. This informal terminology is consistent
with the view that decision-makers dislike ambiguity and with the typical preference for
betting on drawing a ball having a specific colour from S; rather than from S;. But such a
ranking is also consistent with the use of a probability measure (presumably (1/3,1/3,1/3))
for the purpose of ranking bets internal to Ss. If we think of S; x Sy as the state space and
B as the co-ordinate algebra {S; x Ay : Ay C S2}, then probabilistic sophistication on (acts
measurable with respect to) B is commonly assumed, even though events in B are viewed as
being ambiguous. Roughly, the existence of a probability measure that serves as the basis
for the ranking of B-measurable acts depends exclusively on the decision-maker’s view of
events within B. On the other hand, whether or not events in B are subjectively ambiguous
depends also on how they are viewed relative to events outside B (such as the comparison
between drawing a red ball from S as opposed to drawing it from Sy ).

We proceed to examine in greater depth a generalization of this example. Let § = S X .55,
where 57 = Sy = (2 and ) represents the possible states in each urn. We do not insist that
€2 be finite. Let p be a probability measure on . (Implicit is a o-algebra on 2 such that the
product o-algebra equals X..) The decision-maker is told that p describes the distribution of
states within the first urn Sy, but she is told less about the second urn S;. For concreteness,
take outcomes X C R1.

As before F denotes the set of acts over S. Denote by F; the set of acts over the state
space S;. As a first step in defining utility over F, let U, : F, — R! be defined by

16The key defining property of a qualitative probability on 7 is ordinal additivity: For all events E, F
and G, subsets of T° such that G is disjoint from F and F, vE > vF if and only if v(EUG) > v(FUG).

In Ellsberg’s experiment, there were only 2 possible colours in each urn. We prefer to deal with 3 colours,
for the reasons given in the footnote following Lemma 3.9.
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Us(f) = /32 u(f)dé(p), f€F, (3.16)

where u is a continuous and strictly increasing vNM index, where ¢ : [0,1] — [0,1] is a
strictly increasing and onto map and integration is in the sense of Choquet (see the preceding
section). This defines the probabilistically sophisticated subclass of Choquet expected utility
functions.

To define U on F, observe that given any act f over S and s; € S, the restriction f(sy, )
can be viewed as an act over Sy, giving meaning to Uy(f(s1,-)). Thus U can be defined as
follows: For each f € F,

U() = [, VaflonDdp(sn) = [ [ u(f) dolp(so))dp(s:). (3.17)

In other words, uncertainty resolves in two stages. At the second stage and conditional on any
s1, Uy is used to evaluate f(sy,-). This evaluation can be viewed as producing the certainty
equivalent outcome u~ (Ua(f(s1,+))), yielding the first stage act s; — u™ (Us(f(s1,-)))
which is then evaluated using expected utility theory with vINM index u.'®

This preference specification has a number of appealing features. First, preference to bet
on A; X Ay over By X By is independent of the stakes involved (Savage’s P4), implying a
complete and transitive likelihood relation >, on all such rectangles. Moreover, >, satisfies
the following conditions for all events:

?

A1XA2§4B1XA2 R A1XAl2thl><A/2

A1XA2tgA1XB2 < AIIXAQEZAQXBQ.

These equivalences reflect ‘independence’ between the two urns.
A second attractive feature of the preference specification is that it can explain the two-
urn Ellsberg Paradox; indeed, it is often invoked for that purpose. To do so, suppose that

o(t) <t, te(0,1). (3.18)

This specialization implies a strict preference for betting on any event £ C ) when it is
‘drawn’ from S; rather than from S,; that is, & x S =, S1 X E.

Turn to subjectively unambiguous events and domains where preference is probabilisti-
cally sophisticated. There is at least one set of acts on which preference is probabilistically
sophisticated, indeed expected utility. Define the co-ordinate o-algebra

Al = {Al X SQI Al CSl},

and identify F; with the set of A;-measurable acts. (Define A, similarly.) Then

U(f) = [ ufdp, feF

B There is a clear parallel with the Anscombe-Aumann domain of two-stage acts that has played a large
role in axiomatizations such as [22] and [12].
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Acts in JF; are unambiguous in the sense of our formal definition and so the probabilistic
sophistication exhibited on F; is an implication of our later representation result, given that
the axioms specified there are satisfied. Our definition requires some separability between an
unambiguous event 7" and other events disjoint from 7". Here observe that if " = T} x Sy and
if f is an act yielding g(s) if s ¢ T and h(s) if s € T, then U(f) = Jre Ua(g) dp + [z, Ua(h) dp.
Such additive separability provides more than enough to imply that T' is unambiguous.

On the other hand, because U = U, on F3, conclude that U is probabilistically sophisti-
cated also on 3, or more precisely, on the set of A;-measurable acts. But, in general, events
in Ay are ambiguous, as shown by the next result. Thus probabilistic sophistication prevails
also on a subdomain of acts that are ambiguous.

Lemma 3.9. In the context of the two-urn example defined by (3.17), suppose that p has
full support and that either (i) Q is finite and contains at least 4 elements, or (ii) 2 = [0, 1].
Suppose finally that

o(t) # t forallt e (0,1). (3.19)

Then each event of the form T' = S; xT; is ambiguous, where in case (i), Ty is any non-empty
proper subset of §) and in case (ii), T is any interval with 0 < p(T3) < 1.

The proof is straightforward, though tedious and lengthy (it is available upon request from
the authors).'® To show that a given T" is ambiguous, one must provide disjoint events A, B
and C', each disjoint from 7', an act h and outcomes z*, z, z and 2’ such that the invariance
in (3.1) is violated when z is replaced by 2. Figure 1 illustrates the kinds of events that work
for the 7" shown there (B = B;UBj3). To see intuitively why the noted invariance is violated,
take the act h to be constant and equal to y on C (this suffices for the proof), suppose that
By is empty and let * > y > z. If z = x*, then the best outcome z* is attained on an event
containing [0,¢1] x S, and the latter has objective probability p ([0, ¢;]). This precision may
lead to the preference for the conditional bet on A rather than on B (equal here to Bs) and
hence to the first ranking shown in (3.1). However, if z is replaced by 2/ = y, the above
perspective is changed and a reversal in ranking may occur.

The condition (3.19) is intuitive.?® One possibility is (3.18), where the graph of ¢ lies
everywhere below the 45° line, indicating a preference for betting on Si, as explained earlier.
It is noteworthy that a reversal of the strict inequality in (3.18) is also consistent with
the condition in the lemma. In other words, our conclusion about the identity of ambiguous
events is unchanged if there is a strict preference for betting on Ss, the intuitively ambiguous

I9Tf Q) consists of two elements, as in Ellsberg’s original two-urn example, then all events are unambiguous.
There is insufficient scope for the separability required by our definition to have any bite. This is somewhat
similar to the fact that in consumer demand theory, if there are only two goods (and if preference is suitably
monotone), then each good is weakly separable. If  consists of three elements, the conclusion of the lemma
is valid under slightly strengthened assumptions; for example, if the three elements have equal probability
under p.

20Tn fact, the lemma is valid under the weaker assumption that ¢ (p(A)) + ¢ (p(A°)) # 1 for all measurable
A. We focus on (3.19) because it may be interpreted more simply.

20



urn. In that sense, ambiguity is logically distinct from the decision-maker’s attitude towards
ambiguity.

We offer one final observation regarding this example. In the above specification, prefer-
ence conforms with expected utility on F;, which consists of unambiguous acts. But this is

coincidence. For example, suppose that we reverse the ‘order’ of the component state spaces
and defined U by

U(f) = [, [ wlh) dp(sn)ds(p(so)).

Then U is an expected utility function on F;, but events in .57 are in general ambiguous. In
fact, for this preference order, neither urn is unambiguous. The change in designation of Sy
as a result of the change in preference reflects the subjective nature of ambiguity.

4. AXIOMS

Here we specify some axioms for the preference order ». They will deliver not only the A-
system properties for A and a probability measure on these unambiguous events, but also the
probabilistic sophistication of preference restricted to unambiguous acts. This representation
result is the ultimate justification for our definition of ‘unambiguous’. In particular, it
confirms our rough intuition that unambiguous events are assigned probabilities, although
probabilities may exist also on other collections of events.

The set F“* of unambiguous acts is defined by (2.1). Also useful, for any given A € A,
is the set of acts

Fe={feF:fA(X)nAeAforal X C X}.

Denote by € X both the outcome and the constant act producing the outcome z in every
state. Preference statements like ‘xz > 1’ are therefore well-defined and have the obvious
meaning.

Some of the axioms for > are slight variations of Savage’s axioms, with names adapted
from Machina and Schmeidler. Though the axioms are expressed in terms of A, they consti-
tute assumptions about > because A is derived from >. A final remark is that the axioms
relate primarily to > restricted to F“%.

Axiom 1. (Monotonicity): For all outcomes xz and y, non-null events A € A and acts

s A f A
x ifs e Y ifs e

-

(g(s) 1fseAc>i<g(s) jfseAc>‘:”—y'

Axiom 2. (Nondegeneracy): There exist outcomes «* and x such that z* > z.
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Axiom 3. (Weak Comparative Probability): For all events A, B € A and outcomes
¥ >z andy* =y

x* ifse A . z* ifs€B —

x ifs€ A° - x ifse B¢

y* ifse A . y* ifseB

y ifs e A° - y ifseB® )’
This is Savage’s axiom P4 restricted to unambiguous events. As indicated earlier (Section
3.1), this axiom delivers the likelihood relation >, on A, where A >, B if 3z* > z such that

(m* ifs€ A >><w if s€ B )
x ifseA® )~ \z ifseBe )’

Another notable consequence of Weak Comparative Probability, that is specific to our
setting, is that it immediately implies that the Machina-Schmeidler axiom P4* is satisfied on
the domain F“* of unambiguous acts, that is, the implication (3.6) is valid for all events A
and B in A and all acts g and A in Flaup)e- It might seem at first glance that this renders the
remaining route to a suitable representation result routine, because given the key axiom P4*,
the remaining and relatively uncontentious Machina-Schmeidler axioms could be assumed
and their result invoked. However, their arguments (suitably translated) rely on A being a
o-algebra, which is not generally the case when A is the set of unambiguous events.

The next axiom imposes suitable richness of the set of unambiguous events. It is clear
from Savage’s analysis that some richness is required to derive a probability measure on \A.
Further, Savage’s axiom P6 (suitably translated) is not adequate here because A is not a
o-algebra. However, the spirit of Savage’s P6 is retained in the next axiom.

Axiom 4. (Small Unambiguous Event Continuity): Let f, g € F“, f = g, with
[ = (21, A1; 22, As; i Tn, An), 9 = (Y1, B1; Yo, Ba; ...; Ym, Bm), where each A; and B; lies
in A. Then for any © in X, there exist two partitions {C;}, and {D;}, of S in A that
refine {A;}7_, and {B;}}.; respectively, and satisfy:

s ( §<s> L{Z é gg ) , forall k € {1,..,N}; (4.1)
and .
( fc(s) ﬁzj § g’ ) =g, forallje{l,.. M} (4.2)
J

Very roughly, the axiom requires that unambiguous events can be decomposed into suitably
‘small’ unambiguous events. When A is closed with respect to intersections, as in the
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standard model [20] or [16] where it is taken to be the power set, then the axiom is implied
by Savage’s P6, given Axioms 1-3.2!

The preceding axioms are largely familiar, at least when imposed on all of F, rather than
just on F*? as here. The remaining two axioms are ‘new’ and are needed to accommodate
the fact that A may not be a o-algebra.

Say that a sequence {f,}52, in F“* converges in preference to f., € FU¢ if: For any two
acts fi, f* in F*® satistying f. < foo < f*, there exists an integer N such that

fe < fn =< f*, whenever n > N.

Axiom 5. (Monotone Continuity): For any A € A, outcomes z* = z, act h € F4¢ and
decreasing sequence {A,}°, in A with A; C A, define

¢ ifse A, ¥ ifsenie A,
fo=1 2z ifse A\A, | and foo = | = if s € A\(NZ, A)
h(s) ifse A° h(s) ifse A°

If f,, € F*® for alln = 1,2, ..., then {f,}2°, converges in preference to f., and f., € Fue.

The name Monotone Continuity describes one aspect of the axiom, that requiring the indi-
cated convergence in preference.”? The second component of the axiom is the requirement
that the limit f, lie in F** whenever each f,, is unambiguous. This will serve in particular to
ensure that A satisfies the ‘countable’ closure condition A.3 or A\.3’ required by the definition
of a A-system.

It might be felt that given the correct definition of ‘unambiguous’, the derivation of a
probability measure on A should be possible with little more than some richness require-
ments. The axioms stated thus far can arguably be interpreted as constituting such minimal
requirements. However, they do not suffice and we need one final axiom. This may reflect the
fact that only some aspects of ‘unambiguous’ are captured in our definition. In any event,
the final axiom is intuitive and arguably weak. Its statement requires some preliminaries.

A finite partition with component events from A is denoted {A;}. Henceforth all par-
titions have unambiguous components, even where not stated explicitly. Given such a par-
tition, use the obvious abbreviated notation (z;, 4;). For any permutation o of {1,...,n},
(xg(i),Ai) denotes the act obtained by permuting outcomes between the events. Say that
the finite partition {A;} is a uniform partition if A; ~; A; for all ¢ and j and call {4;}
strongly uniform if in addition it satisfies: For all outcomes {z;} and for all permutations o,

(%(i) ) Ai) ~ (5171', Ai) . (4-3)

21Qavage’s P6 applied to F“* would require that, given z, if f = (z;, 4))%; > g = (vi, Bi)%, where
every A; and B; lies in A, then there exists a partition {G;}Y, of S in A such that f = (z,Gy; g,GS) for
all k. Given such a partition, and given that A is closed with respect to intersections, then the collection of
events D;; = G N B, satisfes the requirements in Axiom 4.

22 A related axiom with the same name is used by Arrow [2, p. 48] to deliver the countable additivity of
the subjective probability measure. Here as well, countable additivity will follow from Monotone Continuity,
but as an unintentional by-product.
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In particular, if {A;}7, is a strongly uniform partition, then for all index sets I and J,
subsets of {1,2,...,n},

UicrAi ~p Uieg A if | T = J .

Axiom 6. (Strong-Partition Neutrality): For any two strongly uniform partitions
{A;}7 and {B;}7, if A; ~; B; for all i, then for all {x;},

T ifSEAl 1 ifSGBl
T9 ifSEAQ To ifSGBg (44)
z, ifsecA, x, Iifse B,

The hypothesis that the A;’s and B,’s satisfy (4.3) expresses another sense in which these
events are unambiguous. This makes the conclusion (4.4) natural and much weaker than if
the indifference in (4.4) were required for all uniform partitions. The latter axiom would go a
long way towards explicitly imposing probabilistic sophistication, an unattractive feature in
the present exercise where the intention is that probabilistic sophistication on unambiguous
acts should result primarily from the definition of ‘unambiguous’. Axiom 6 is less vulnerable
to such a criticism.

To support the claim that Strong-Partition Neutrality is a ‘weak’ axiom, observe that
it is satisfied by all CEU orders, proving that it falls far short of imposing probabilistic
sophistication. The reason is that if {A;} is a strongly uniform partition, then v must be
additive on the algebra generated by the partition.?® Thus the indifference (4.4) is implied.

We turn next to the implications of these axioms.

5. PROBABILISTIC SOPHISTICATION ON UNAMBIGUOUS
ACTS

Define “probabilistic sophistication on unambiguous acts F“*” by extending the definition
of Machina and Schmeidler. For the convenience of the reader, the complete definition is
stated here.

Some preliminary notions are required. Denote by D(X) the set of probability distribu-
tions on X’ having finite support. A probability distribution P = (21, p1;...; Tm, Pm) is said
to first-order stochastically dominate Q = (Y1, q1;---; Yn, dn) With respect to the order = over
the outcome set X if

Z P < Z q; forallz € X.
{i:z; <} RS
Use the term strict dominance if the above holds with strict inequality for some z € X.

Given a real-valued function W defined on a mixture subspace dom(W) of D(X), say

that W is mizture continuous if for any distributions P, @) and R in dom(W), the sets

Ael0, 1]: WP+ (1-A)Q) > W(R)} and
e, 1]: WOP+(1-N)Q) < W(R)}

Z3Recall that we have defined a CEU order so that u(X) has nonempty interior, where u is the vINM index.
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are closed. Say that W is monotonic (with respect to stochastic dominance) if W (P)(>) >
W(Q) whenever P (strictly) stochastically dominates @, P and Q in dom(W).

Given a probability measure p on A, denote by Ps, € D(X) the distribution over out-
comes induced by the act f. Define

D¥(X) = {P;,: f € F*}.

When p is convex-ranged, then Dy*(X) is a mixture space.

We can finally state the desired definition. Say that > is probabilistically sophisticated on
JFve if there exists a convex-ranged probability measure p on A and a real-valued, mixture
continuous and monotonic function W on Dp*(X’) such that > has utility function U of the
form

Uf) = W (Pry). (5.1

Roughly speaking, the probability measure p is used to translate acts in F** into (purely
risky) lotteries and these are evaluated by means of the risk preference functional W. No
stand is taken on the functional form of W, apart from monotonicity and mixture continuity,
thus capturing exclusively the decision-maker’s reliance on probabilities for the evaluation of
unambiguous acts. Subjective expected utility is merely one example, albeit an important
one, in which W is an expected utility function on lotteries D;,‘“(X ) and thus U has the
familiar form

U = [ ulf)dp. (52)

We remind the reader that because A and F*¢ are derived from the given primitive pref-
erence relation = on F, probabilistic sophistication so-defined is a property of > exclusively
and does not rely on an exogenous specification of ‘unambiguous acts.’?*

Probabilistic sophistication with measure p implies that likelihood (or the ranking of
unambiguous bets) is represented by p; that is,

Ay B <= pA>pB, forall A,Bec A

But (5.1) is much stronger, requiring that the ranking of all (not necessarily binary) unam-
biguous acts be based on p.

Turn to the implications of our axioms. A preliminary result (proven in Appendix B) is
that they imply that A is a A-system.

Lemma 5.1. Under Axioms 2, 4 and 5, A is a A\-system. In particular, if Ty and Ty are
disjoint unambiguous events, then T; U T; is unambiguous.

The following is our main result:

Theorem 5.2. Let = be a preference order on F and A the corresponding set of unam-
biguous events. Then the following two statements are equivalent:

24Tf A and FU® are replaced by ¥ and F respectively, then one obtains the Machina-Schemidler definition
of ‘global’ (i.e., on F) probabilistic sophistication, with the minor difference that they take ¥ = 25.
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(a) = satisfies axioms 1-6.

(b) A is a A-system and there exists a (unique) convex-ranged and countably additive
probability measure p on A such that > is probabilistically sophisticated on F** with
underlying measure p.

The important feature of the theorem is that both A and p are derived from preference. This
feature distinguishes the theorem from the contributions of Savage and Machina-Schmeidler
(who impose added axioms that imply A = %), and render it a contribution towards a fully
subjective theory of probability as discussed in the introduction.

We would like to clarify the sense in which we have established probabilistic sophistication
on an endogenous domain. One way to accomplish this is as follows: Identify from preference
some class of events A’ and the corresponding set of measurable acts F’. Then impose
the Machina and Schmeidler axioms for preference - restricted to F', making the changes
necessary to allow for the fact that 4’ may not be an algebra. Such an exercise would
also generalize [16] and may be of some value. But this is decidedly not the nature of our
contribution. For example, our representation result does not explicitly impose the key
axiom P4* used in [16]. Admittedly, P4* on F“* is implied by the definition of F*“* and by
Weak Comparative Probability, but we view this as confirmation of the appropriateness of
our definition of ‘unambiguous.’

A noteworthy feature of our theorem is that is silent on the nature of preference on the
domain of ambiguous acts. While at first glance this may seem like a weakness of our result,
we feel to the contrary that it is a strength.2®> As argued in the introduction, a theory of
probability should not deliver structure that is not germane to the use of probabilities. In
this sense, restrictions on the ranking of ambiguous acts constitute excess baggage and it is
a virtue of our representation theorem to have avoided them.

The bulk of the proof of Theorem 5.2 is found in Appendices C and D. The arguments in
[20], [9] and [16] must be modified because only in the present setting is the relevant class of
events A not closed with respect to intersections. A key step is to show (Appendix C) that
our axioms for preference deliver the conditions for the implied likelihood relation that are
used in [27] in order to obtain a representing probability measure. The proof of probabilistic
sophistication is completed in Appendix D.

We conclude this section with two corollaries (proofs are provided in Appendix E). The
first provides some reassurance that our definition of ‘unambiguous’ is appropriate. The sec-
ond corollary elaborates on the performance of our theory within the framework of Schmei-
dler’s Choquet expected utility model of preference.

Given the probability measure p on A, one might approximate the likelihoods of ambigu-
ous events by means of the inner and outer measures p, and p* defined as follows:* For each
Ein X,

p(E) = sup{p(A): Ac A, AC E} and

25We are indebted to Michelle Cohen and Mark Machina for helping to clarify our thinking on this point.
26See [23] and [8]. For an application to decision theory, see [26].
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p*(E) = inf {p(A): Ac A E C A},

These non-additive measures provide intuitive lower and upper bounds for the likelihood
assessment of E; in particular, p.(-) < p*(-).
Define

A={E: p.(E) = p"(BE)}.

Events in A seem intuitively to be ‘unambiguous’. The definition yields A4 > A. Given our
axioms, we can prove equality.

Corollary 5.3. Let = be as in Theorem 5.2. Then A = A.

Next we apply our theorem to the CEU model. Recall the notation in Section 3.6. Say
that a capacity v is convez-ranged on A if for every A in A,

[0,vA] = {vB: Be A, BC A}.
Say that v is continuous if for all events in S,
vA, \, v(NA4,) if A, \, and
vA, / v(UA,) if A, 7.

Corollary 5.4. Let > be a CEU preference order with capacity v and subjectively unam-
biguous events A.

(a) Suppose that v is continuous and convex-ranged on A. Then there exists a convex-ranged
and countably additive probability measure p on A and a strictly increasing and onto map
¢ :[0,1] — [0,1] such that v = ¢(p) on A = A.

(b) Suppose in addition that v(Ag) = [0,1] and that A, is closed with respect to comple-
ments. Thenv = p on A.

(c) Suppose that v is continuous and convex-ranged on A, that v is exact and that there
exists an event A in A such that

v(A) + v(A®) = 1land 0 < v(A) < 1. (5.3)

Then v = p on A and
A=Ay = A = As.

Under the conditions in part (a), the CEU order satisfies the axioms in Theorem 5.2, showing
that the latter’s scope extends beyond globally probabilistically sophisticated preferences.
Part (b) gives conditions under which the CEU preference order is expected utility (and not
merely probabilistically sophisticated) on the domain of unambiguous acts. Part (c) goes
further and gives conditions under which A coincides with the families indicated and dis-
cussed earlier. Differences such as those described in (3.11) are eliminated, in part, through
the assumption that v(A4;) N (0, 1) is nonempty.*”

2TWe owe this strong form of the result in (c) to Massimo Marinacci. Earlier versions of the paper assumed
v(Aj) = [0,1] rather than merely (5.3).
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6. FURTHER RESEARCH

Characterization of families of subjectively unambiguous events: Theorem 5.2 leaves open
the question “is any suitably rich A-system the family of subjectively unambiguous events
for some preference order satisfying our axioms?” If not, what added properties are implied
for such families?

We offer the following conjecture:

Conjecture 6.1. Let Ay be any A-system of events and let p be a convex-ranged and count-
ably additive probability measure on Ag. Then there exists a preference relation > on F
such that: (i) Its class of subjectively unambiguous events, as defined in this paper, coincides
with Ag; and (ii) when restricted to the class of Aq-measurable acts, > is probabilistically
sophisticated with underlying probability measure p.

Multiple domains of probabilistic sophistication: Ultimately, we would like to derive from
preference all subdomains of acts where probabilistic sophistication prevails.

Degrees of ambiguity: We have classified events as being either unambiguous or ambiguous,
but it seems natural to go further and to define a partial order ‘more ambiguous’ on events.
It remains to be seen how this might be done.

Ambiguity aversion: As outlined in Section 1.4, we can adapt the approach in [6] and use
subjectively unambiguous events as the reference class used to define ambiguity aversion.
That leads to the following definition: Say that the preference order = on F is ambiguity
averse if there exists another order »?° on F , that is probabilistically sophisticated there,
such that

hzt (=) f = h=(-)f,

for all A in F** and f in F. Here F“® denotes the set of subjectively (for ») unambiguous
acts as defined in this paper. The interpretation begins with the view that any probabilis-
tically sophisticated order »P¢ is indifferent to ambiguity. Accordingly, if =P* prefers the
unambiguous act h to f, then so should the ambiguity averse >, because = will discount f
further due to its being ambiguous.

Further study of ambiguity aversion and its behavioral consequences are beyond the scope
of this paper. We merely note that any CEU preference order satisfying the conditions of
Corollary 5.4(c) is ambiguity averse according to the above definition. We also refer the
reader to [4] for some implications in asset markets.

Aziomatization of expected wutility on subdomain of linearly unambiguous acts: Because of
the importance of the expected utility special case of probabilistic sophistication, one might
be interested in a variation of Theorem 5.2 in which preference over unambiguous acts has
the expected utility form. Such a representation result can be achieved as follows: Denote by
A* C A the class of linearly unambiguous events and by F™¢ C F% the corresponding set
of acts. Assume axioms 1-6, suitably reformulated by substituting A* for A in the existing
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statements of these axioms. Then the proof of Theorem 5.2 may be routinely adapted to
derive an expected utility representation on F***. This is roughly the route followed in [26].28

A. APPENDIX: Choquet Expected Utility

Use ‘+’ to denote disjoint union.

Proof of Lemma 3.8: Sufficiency may be proven by routine verification. We prove
necessity.

Let T' be unambiguous. If z* > z, then v(A+ D) > v(B + D) iff

(m* A+ D >><az* B+ D )<:>

z S\(A+D) )=\ z S\(B+D)

z* A+ D x* B+ D

r B o |z A

z TNA+B+D) |=| z TNA+B+D) | =
o T ¢ T

8

( x* gii;f:ﬁigiklﬁ ) ti( z* é;}i;:ﬁ}?ikiﬁ ) -

vV(A+D+T)>v(B+D+T).
Suppose next that (3.13) is satisfied. In fact, suppose that
v(A+D)<v(B+D)and v(A+D+C)>v(B+ D+ C). (A.1)

(The other case is similar.)
The event T' is unambiguous only if

z* ifse A x ifsed

x ifseB z* ifseB

Yy ifseC = |y ifseC — (A2
h(s) if se T\(A+ B+ C) h(s) if seT\(A+ B+ )

z ifseT z ifseT

a similar ranking obtains for the acts where 2’ replaces z. Suppose that h equals 7 on D
and y on T°\(A + B 4+ C' + D) and that

gz =y>=z>y, z=yand 2 =2" (A.3)

Z8n order to clarify the relation between this paper and [26], we point out that the latter does not contain
a separate proof of the expected utility representation result. Rather it cites the arguments in this paper,
suitably adapted, for a proof.
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Then by the definition of Choquet integration, the above equivalence becomes

uw(@*)v(A+D) + u(y) W(C+T+A+D)—v(A+D)] +u(z)[l —v(C+T+A+D)] >
w(@*)v(B+ D) 4+ u(y) [v(C+T+B+D)—v(B+D)] + u(x)[l —v(C+T+ B+ D)]

if and only if

w(@)v(T + A+ D) + uly) v(C+T+ A+ D) —v(T+ A+ D)+
uwz)[l-v(C+T+ A+ D) >
(e*)v(T'+B+D) + uly) v(C+T+B+D)—v(T'+ B+ D)+
()

z)[1 —v(C+ T+ B+ D)].

e

U
Equivalently,

[u(z") = u(y)] (W(A+ D) —v(B+ D))+
[u(y) —u(z)| w(C+T+ A+ D) —v(C+T+B+D)) >0

[u(z*) —u(y)] W(T+ A+ D)—v(T+ B+ D)) +
u(y) —u(z)] W(C+T+A+D) —v(C+T+ B+ D)) >0,

where this equivalence obtains for all outcomes.

By (A.1) and appropriate forms of (3.12), which has already been proven, conclude that
(vV(A+ D) —v(B+ D)) and (v(T+ A+ D) — v(T'+ B + D)) are both negative, while
(v(C+A+ D) —v(C+ B+D))and (v(C+T+ A+ D) — v(C+ T+ B+ D)) are both
positive. Because the range of u has nonempty interior, we can vary the above utility values
sufficiently to conclude from the preceding equivalence that

v(IT'+A+D) —v(T+B+D) =v(A+D) — v(B+ D). (A.4)
Next apply a similar argument for the case
g-a*>=y>=x>y z=xand 2 =17,
in place of (A.3). One obtains the equivalence

[u(z*) —u(y)] W(A+ D) —v(B+ D))+
[u(y) — u(x)] (v(C+ A+ D) — v(C+B+D)) >0

[u(z*) —u(y)] W(T+ A+ D)—v(I'+ B+ D)) +
[u(y) — u(z)] W(C+T+A+D) —v(C+T+B+D)) >0,

where this equivalence obtains for all outcomes. Apply (A.4) and conclude that

v(IC+A+D)-v(C+B+D) =v(C+T+A+D)—v(C+T+ B+ D).
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B. APPENDIX: \-System

Proof of Lemma 5.1: Suppose that for some disjoint subsets A and B of (T3 UT)¢, act h
and outcomes z*, , z, 2’ € X, that

¢ ifse A r ifseA
r ifseB o z* ifse B
h if s € (Tl U Tg)c\(A U B) - h if s € (Tl U TQ)C\(A U B)
z ifSETIUTQ zZ ifSETlLJTQ
By (3.1) for Ts,
¢ ifse A r ifseAd
r ifsecB z* ifse B
h ifse (ThUT)*\(AU B) > h ifse(ThUT)\(AUB) [,
z ifsel) z ifseTy
Z fseTy Z ifseT;
which can be rewritten in the form
¢ ifse A xr ifse A
r ifseB z* ifse B
h ifse (T UTy)\(AUB) - h if s e (Th UTy)\(AU B)
2 ifseTy Z ifseT,
z ifseT) z ifsely
By (3.1) for T3,
z* ifsc A x ifseA
r ifseB z* if se B
h if s € (T3 UT3)\(AU B) - h ifse(ThUTy)\(AUB) |, or
Z ifseTy Z ifseT,
z ifSETl z ifseT)
¢ ifsec A z ifseA
x ifseB . z* ifse B
h if s < (Tl U TQ)C\(A U B) - h if s € (T1 U TQ)C\(A U B)
Z ifseTyaUTy Z HseTy,UT,

Therefore, To U T} satisfies the appropriate form of (3.1).

It remains to prove that (3.1) is satisfied also by (77 UT5)¢. By Small Unambiguous Event
Continuity (Axiom 4) applied to the unambiguous events T} and T5, there exists a partition
{A;}"; of S in A such that (T; U T3)° equals the finite disjoint union

(uh)y= | A4

A;C(ThUTR)e
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Thus the first part of this proof establishes (3.1) for (7} U T3)°.
To complete the proof, it suffices to show that for any {4, }52,, a decreasing sequence in
A, we have N2, A € A: By Nondegeneracy, there exist two outcomes z* > z. Then

£ = (x* ifse A,

=1, ifseA%)ef“,foraﬂn:l,Q,...

By Monotone Continuity (Axiom 5),

fo = z* if sen, A,
*\z ifse(nN2,A,)°

) e
Consequently, N2 4, € A. 1

C. APPENDIX: Existence of Probability

The first step in proving Theorem 5.2 is to prove the existence of a probability measure
representing >,. This appendix states a theorem (proven in [27]) that delivers such a prob-
ability measure given suitable properties for =,. The theorem extends [9, Theorem 14.2] to
the present case of a A-system of events. Next it is shown that these properties are implied
by the axioms adopted for >, as specified in Theorem 5.2.

For the following theorem, A denotes any A-system and >, is any binary relation on A;
that is, they are not necessarily derived from >, though the subsequent application is to
that case. Denote by

N = {AcA: Arg 0}

Theorem C.1. There is a unique finitely additive, convex-ranged probability measure p on
A such that
Ay B<=p(A)>p(B), VA BeA

if (and only if) =, satisfies the following:
F1 0=, A, forany Ac A
F2 0=<,8
F3 >, is a weak order
F4 IfA,B,Cc Aand ANC=BNC=0, then A<, B<= AUC <, BUC.

F4’ For any two uniform partitions {A;}?_; and {B;}?_, of S in A, UicrA; ~¢ UicsB;, if
1| = |J].
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F5 (i) If A€ A\N(0), then there is a finite partition {A;, A, ..., A,} of S in A such that
(1) A, C Aor Az C Ac) 1=1,2,..,n; (2) A, < A, t=1,2, w1
(i) If A, B, C € AN(®) and ANC = 0, A <, B, then there is a finite partition
{C1,Cy,...,Cp} of C in A such that AUC; <, B,i=1,2,...,m.

F6 If {A,} is a decreasing sequence in A and if A, <, N°A, <, A* for some A, and A*
in A, then there exists N such that A, <, A, <; A* foralln > N.

Axioms F'1, F2, F'3 and F'4 are similar to those in [9, Theorem 14.2], while F'5 strengthens
the corresponding axiom there. The additional axioms F'4' and F6 are adopted here to
compensate for the fact that A is not a o-algebra.

For the remainder of the appendix, A, >, and > are as specified in Theorem 5.2 and the
axioms stated in (a) are assumed. By Lemma 5.1, A is a A-system. The objective now is
to prove that conditions F'1 — F'6 are implied by the axioms given for ». Proofs that are
elementary are not provided.

Lemma C.2. Let {A;} be a uniform partition of S in A. Then for all outcomes {z;} and
for all permutations o,

(ma(i); Ai)i ~ (z5, Ai); - (C.1)

In other words, every uniform partition is strongly uniform.

Proof. Without loss of generality, assume z; > x5 and that

X1 ifSEAl T2 ifSEAl
W) ifSEAQ T ifSEAQ
xz3 ifse€ Ay | = | 23 ifs€ A;

1 ifs €A, £, if s € A,
Since {A;}!_ 4 are unambiguous, the appropriate form of (3.1) implies
vy ifs€ A zo if s € AS
(3}'2 if s € Af ) s ( z, ifs€ A >;
that is, A1 >4 As, a contradiction. Similarly for the other cases. B

By showing that the axioms 1-6 for > imply properties F'1 — F'6 for »,, we prove the
following:

Theorem C.3. Let = be a preference order on F and denote by A the set of all unambiguous
events. If > satisfies Axioms 1-6, then there exists a unique convex-ranged and countably
additive probability measure on A such that

A=y B <= p(A)>p(B), forall A,B e A
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Proof. Fix outcomes z* = x. Properties F'1- F'3 for >, are immediate.
F4: (Note the role played here by the specific definition of .A; not any A-system would do.)

If A<, B, then
z*¥ ifse A g z* ifseB
z ifsc A z ifsc B¢ » Of

z* if se A\B z ifse A\B

z ifse B\A z* if se B\A

ho ifse (ANB)UCNAUB) | X | n ifse(ANB)U(CN\(AUB)) |’
z ifse(C x ifseC

where
b z* ifse ANB
"l z ifseC\(AUB)

Since C' is unambiguous, deduce that

z* if s€ A\B z* if se B\A

z ifse B\A z ifse A\B
hoifse(ANB)U(CNAUB)) || h ifse(ANB)U(CN\AUB)) |’
z* ifseC zt ifseC’

or AUC <4 BUC. Reverse the argument to prove the reverse implication.
F4' follows from Lemma C.2 and Axiom 6.

F5 (i): Since A =, 0,
ot ifsc A g r ifsec A
x ifse A° Y=\ 2z ifsede |-

By Small Unambiguous Event Continuity (Axiom 4), there is a partition {A;}7; of S in A,
refining {A, A°} and such that

z* ifse A o z* if s e A 19
x ifse A° x if s € Af V=44 T

That is, for each 7, A; C A or A; C A° and in addition, A; <, A.
F5 (ii): Let A, B and C be in AN (D), ANC =0 and A <, B. Then

z* ifse B ¢ ifseA v %fSEA
f= f e Be - foca | =1 ¢ ifseC =g.
TR vons r if s € AN\C

By Small Unambiguous Event Continuity, there exists a partition {C},..., C,} of S in A,
refining {A, C, A°\C'} and such that

[z ifseB . z* if s€ C; =192 .n
f= r ifs€ B¢ g ifseCce )’ T
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If C; C C, then
z* ifse B . z* ifseCy |
z ifse B¢ g ifseCs )
z* if s e C;

¥ ifse A

z ifse(AUC)® z ifse (AUC))e

implying that AU C; <, B.
F6: Implied by Monotone Continuity. B

D. APPENDIX: Proof of Main Result

Necessity of the axioms in Theorem 5.2: The necessity of Monotonicity, Nondegen-
eracy and Weak Comparative Probability is routine. Denote by >p the order on D;f"'(X )
represented by W.

Small Unambiguous Event Continuity: Let f > g and z be as in the statement of
the axiom. Denote by P = (21, p1;...; Zn, Pn) and Q the probability distributions over
outcomes induced by f and g respectively, and let z be a least preferred outcome in
{z} U {21, zo,..., z,}. Since P >p @ >p 6, mixture continuity and monotonicity with
respect to stochastic dominance ensure there exists some sufficiently large integer N such
that W ((1 - 4P+ %@) > W(Q). Because p is convex-ranged, we can partition each set
A; into N equally probable events {Aij}é\rzl in A. Let Cy = UN, Ay for k = 1,2,...,N.
Then {Cy}i_, is a partition of S in A, p(Ci) = 1/N and p(4;\Ci) = (1 — 1/N)p; for
each i and k. Consequently, [z if s € Cy; f if s ¢ Ci] induces the probability distribution
(1/N)é, + (1 — 1/N)P which is strictly preferred to ). Combined with monotonicity with
respect to first-order stochastic dominance, this yields [z if s € Cy; f if s ¢ C¢| = [z if
s € Cy; f if s ¢ Cg] > g. Similarly for the other part of the axiom.

Monotone Continuity: Given a decreasing sequence {4, }5°, in A, p(4,) \, p(N°4;) by
the countable additivity of p. The required convergence in preference is implied by mixture
continuity of W. The limit f., lies in F"* because we are given that A is a A-system.
Strong-Partition Neutrality: Immediate from (5.1).

Sufficiency of the axioms in Theorem 5.2: Let p be the measure provided by Theorem

C.3.
Lemma D.1. For unambiguous events A and B:

(a) A is null iff A ~,; (.
(b) If A~y B~y 0 and AN B =10, then AUB ~; (.
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Proof. (a)Fixz > y. Let A be null. Then
z ifsed ) (yifsed ) [z ifsel
y ifse A° y fsede | YT\ y ifses )
implying that A ~¢ (. If A is not null, then by Monotonicity (Axiom 1),
z ifse A . y ifseAd \ [z ifsed
y if s € A° y ifseA® )] \y ifseS )’

implying that A =, 0.
(b) Let >y and AU B >, 0, that is,

r A
x B - 1.
y (AUB)°

By (a), A and B are null and

y A xz A xz A
y (AUB)* y (AUB)* y (AUB)

This is a contradiction. W

For each f € F*¢, define
P = (21, p(f 7 (@1)); 5 @y B(F 7 (0)))
Because p is fixed, it may be suppressed in the notation. Accordingly, write
Py € D™(X) = {P;: f € F*}. |
Define the binary relation »p on D**(X) by
PrpQ if3fr-g P=PFPrand Q= F,.

Lemma D.2. If P; = P,, then f ~ g. Thus >p is complete and transitive.

Proof. = We must prove that for any two partitions {4;}?, and {B;}?, of S in A, if

A; ~p B;, 1 =1,2,...,n, then for all outcomes {z;}?_,,

r; ifse A r, ifse By
To if s e Az N 29 if s€ By (D 1)
z, ifseA, z, ifse B,
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Case 1: {A4;}7, and {B;}?, are uniform partitions of S in \A. The desired conclusion
follows from Lemma C.2 and Axiom 6.

Case 2: All probabilities {p(A4;)}}-, and {p(B;)}?~, are rational. Because p is convex-ranged,
there exist {F;}72, and {C;}7,, two uniform partitions of S in A, such that

A = |J E;,i=12,..,nand
E;jCA;

B, = |J Cji=12,..,n
C;CB;

Now Case 1 may be applied.
Case 3: This is the general case where some of the probabilities p(4;) or p(B;) may be
irrational. Suppose contrary to (D.1) that

Tt ifSEAl Iy ifSGBl
O Rt Sl PR
z, ifseA, z, ifse B,

Without loss of generality, assume that x, > -+ > x5 > z; and p(A4;) = p(B;) is irrational.

By the convex range of p over A, there are rational numbers r,,, *,, and two increasing
sequences {A7"}>°_; and {B]"}%°_; in A with AT C 4; and B* C By, m = 1,2, ..., such that
P(AT") = p(B") = m /" p(A1) = p(B1) as m — oco. Accordingly,

p(A\AT) = p(Bl\Bm = P(Al) — p(AT") \, 0 as m — oo.
Thus, both {A;\AT'}e>_; and {B;\B]"}%°_, are decreasing sequences in .A and

M1 (ANAT) ~p N2 (BI\BT") ~e 0. (D.3)
Define
zy if s € B z; ifseny_BY
gm=1| 2z fs€BI\B" |,geo=| 22 ifse B\(N_,B™ |.
g ifse DBy g ifse By
By Lemma D.1 and (D.3),
goo ~ g = f.

By Monotone Continuity, g,, converges to ¢, in preference as m — oco. Conclude that
there exists an integer N; such that

gm < f whenever m > Nj.
In particular,
z, if s € BM
g, = | mo ifs€ BI\BM | < f.
g ifseBs
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By Monotonicity,
1 ifsEA{Vl 1 ifsEA]lvl 1 ifseB{V1
Ty ifse Al\Ajlvl | =, ifse Al\A]lV1 =f>| z, ifse Bl\BlNl )
[ ifse AS [ ifse A§ g ifse Bf
Therefore,
z; if s € A z, if s € B
zo ifs€ AUANAT) | = | 2, ifse ByU(B\BM) |.
f if se (Al U Ag)c g if se (B] U Bg)c

Note further that Ay U (A;\A(™") ~¢ By U (B1\BM) since p(Ay U (4:\AM)) = p(B,y U
(B;\B{"™")). Thus a proof by induction establishes that

Tt lfSEAllvl T 1f8€B{v1
) ifSEz‘lév2 D) ifSEBéVQ

z3 ifsc A | =] 23 ifseBM |,
z, if s€ Aln z, ifs€ BY»

where A ~y BN =1
2. 1

,2,...,n and every p(AN') = p(B}) is rational, contradicting Case

The rest of the proof is similar to Steps 2-6 in the proof of [16, Theorem 2]. For example,
in the proof of mixture continuity of »p on D**(X) (Step 3), Small Unambiguous Event
Continuity may be used in place of Savage’s P6 in order to overcome the lack of a o-algebra
structure for A.

E. APPENDIX: Proofs of Corollaries
For the proof of Corollary 5.3, we need the following lemma:

Lemma E.1. Let p, be the inner measure induced from (A, p). Then for any event F € %,
there exists an increasing sequence {A,} in A with A,, C A such that

nh_{{)lo p(4s) = p.(4).

Proof. Claim: For any two events A C B in A, and any r € (p(A), p(B)), there
exists C € A with A C C C B such that p(C) = r. This is proven as follows: Because
p(B\A) = p(B) —p(A) > 0and 0 < r—p(A) < p(B) —p(A) = p(B\A), then by the
convex range of p, there exists D € A, with D C B\A and p(D) = r —p(A). Let C = DUA.
Then C € A, AC C C B and p(C) = p(D) +p(A) = r.
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By the definition of p,, there exist {B,}5°; in A with B, C A, n = 1,2, ... such that

p(Bn) Z p*(A) - 1/”

Without loss of generality, p(B,) < p(Bn41) for all n. Let A; = B;. Since p(By) > p(By),
the claim implies that there exists A, € A with A; C A, such that p(A;) = p(Bsy). Proceed
by induction to derive an increasing sequence {A,}2>, in A such that p(4,) = p(B,,) for all
n. WA

Proof of Corollary 5.3: Let p, and p* agree on E. By the above lemma, (and the
corresponding result for p*), there exist unambiguous events {A,} and {B,} such that

A, CECB, A, /', B, \, and p(B,\A,) < 1/n.

Because A is a A-system, A, = UA, and B,, = NB, are unambiguous. By countable
additivity and Lemma D.1, p(Bo\As) = 0 and B \As is null. Therefore, F\A,, is
null and (by Lemma 3.2) unambiguous. Thus FE, the disjoint union of A, and F\ A, is
unambiguous. W

Proof of Corollary 5.4: (a) The assumptions on v imply that = satisfies the axioms in
Theorem 5.2. (Continuity implies Monotone Continuity for > and convex-ranged implies
Small Unambiguous Event Continuity. To verify Monotonicity, apply the special nature of
unambiguous events whereby they satisfy (3.1).) Therefore, there exists a convex-ranged
and countably additive p representing the likelihood relation on A that is implicit in >.
Conclude that p must be ordinally equivalent to v on A.

(b) From (a) and Lemma 3.7, v = ¢(p) on A D Ay, where p is convex-ranged on A.
Therefore, v(Ag) = ¢(p(Ao)) = [0,1]. Because ¢ is (strictly) increasing and onto, conclude
that p(Ag) = [0,1]. Now it is straightforward to prove that ¢ is the identity function. (For
any two z1, 23 € [0, 1] with z1+22 < 1, there exist A; € Ag and Ay € A such that p(A4;) = z1,
p(A2) =z and A; N Ay = (). From the definition of Ay, v(A; U As) = v(A;) +v(Ag), or

V(A1 UAs) = ¢(p(A1U Az)) = ¢(p(A1) + p(A2))
= ¢(z1+ z2) = v(A1) + v(Ag)

(p(A1)) + ¢(p(A2))

(1) + ¢(z2).

Since ¢ is continuous, ¢ is linear on [0, 1].)
(¢) Let p be the measure provided by (a) and fix any measure ¢ in core(v). Continuity of v
implies that ¢ is countably additive [21]. We show that A satisfies: For any B € A,

p(B) = p(A) = q(B) = q(A). (E.1)
Then a recent result by Marinacci [17] allows us to conclude that p = ¢. Because this is true

for any ¢ in the core, conclude further that core(v) = {p} and hence, because v is exact,
that

© S

v=p on A
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From above, A C Aj, the class of events where all measures in the core agree. In addition,
A; C Aby Lemma 3.7 and A; = A; = Ay by Lemma 3.6.
Thus it suffices to prove (E.1). Let p(B) = p(A). Then

v(B) = ¢(p(B)) = ¢(p(4)) = v(A). (E.2)
Similarly, v(B¢) = v(A®). From the hypothesis v(A4) + v(A°) = 1, deduce that
v(B) + v(B°) = 1.
Because ¢(-) > v(-), deduce further that ¢(B) = v(B). Similarly, ¢q(A) = v(A). Finally,
¢(B) = ¢q(A) from (E.2). &
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Figure 1: 2-Urn Example



