Rochester Center for

A Few Humble Observations on Overconfidence and Equilibrium

Francesco Squintani

Working Paper No. 480
April 2001

UNIVERSITY OF
ROCHESTER




A Few Humble Observations
on Overconfidence and Equilibrium*

Francesco Squintani
University of Rochester
Department of Economics'

February, 2001

Abstract

This paper describes equilibrium in games where the informed players may be
overconfident. Motivated by specific moral-hazard, signalling and screening problems,
we first assume that the “uninformed” players know that “informed” players may be
mistaken, but that the “informed” players are unaware of this. In standard Bayesian
games, we identify a conflict between self-perception and equilibrium conjectures. We
thus turn to population games and assume that while each player believes that her own
perception is correct, she also knows that the other players in the population are on
average overconfident. It is shown that in any equilibrium of any such game, players
cannot be made better-off by being overconfident. Overconfidence may be beneficial
only when comparing payoff across different games, or across different equilibria of
the same game. The second part of the paper considers any description of high-order
knowledge of overconfidence. We determine the descriptions that allow to construct an
equilibrium concept immune to introspective conflicts. It is shown that overconfidence
cannot make any player better off also in the case that she is aware that the opponents
think that she is overconfident. The paper is concluded by showing how to translate
our knowledge-based analysis in the language of Mertens and Zamir (1985) universal

types.
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“...and that’s the news from Lake Wobegon, Minnesota, where all the women are strong,
and all the men are good-looking, and all the children are above average !”
Garrison Keillor

“A Prairie Home Companion”

1 Introduction

In Bayesian games modelling adverse-selection, signalling or screening problems, some in-
dividuals’ unobservable characteristics (such as ability, intelligence and so on) influence the
players’ payoff. It is customary to assume that informed players precisely assess their own
characteristics. Well-settled experimental evidence from the psychology literature contra-
dicts that assumption. Subjects on average overestimate their own personal characteristics,’
even though they do not suffer from this bias when judging the characteristics of others.? The
aim of this paper is to describe the equilibrium of Bayesian games with private information
where the informed parties may be mistaken in their self-perception.?

Before proceeding with the presentation, it is important to underline a few qualifications
on the object of this paper’s analysis. We intend confidence to mean one’s private information
about her characteristics, and we will employ the terms self-confidence and self-perception in-
terchangeably. It is important to separate overconfidence (a mistake in self-judgement) from
“overconfident” behavior. One can easily describe strategic interactions where an overconfi-
dent player deceivingly chooses to take a very humble course of action. A second distinction
is in place. It is conceivable that overconfidence has a direct psychologic effect on a player’s

utility, common wisdom deems in fact that confident people feel better about themselves.

'The experiment protocols of Einhorn and Hogarth (1978), Svenson (1981), and Segerstrom et al. (1993)
ask each subject in the sample in which percentile of the experiment pool she belongs to, with respect to
intelligence, ability etc... The typical finding is that most subject believe to be above average.

2 Among the experimental studies showing that self-evaluations (presumably incorrect) are systematically
higher than the evaluation made by others, see Lewinsohn et al (1980), Taylor and Brown (1988), Burger
and Burns (1988).

3In order to present the different themes of this contribution in the most transparent manner, we will
restrict attention to 2-player games with one-sided private information. This restriction does not entail any
relevant loss of generality. It is easy to see how to generalize the construction and results to any Bayesian
game.



However we assume that overconfidence does not directly influence the player’s payoff, and
can only have an indirect effect on utility by modifying the player’s behavior. In fact, we
would like to clearly separate self-perception, which is a payoff-irrelevant property of beliefs,
from self-esteem, which has a direct effect on one’s welfare.*

With respect to the game-theoretical structure of the interactions analyzed in this paper,
we should say that our formulation is quite general, as it deals with all the equilibria of
any Bayesian games. In particular, this framework does not apply only to one-shot games,
rather it allows for any sequential structure of the player’s moves. This paper thus applies
indifferently to the case of one-shot interactions, dynamic or repeated interactions. Also,
by explicitly including nature’s moves in the framework, this paper allows for the option
of experimentation and learning by the players, in any possible fashion. Since our results
hold for any equilibrium of a given Bayesian game, they hold a fortiori for any equilibrium
refinement that embeds considerations motivated by robustness, or by a particular sequence
of choices in an underlying extensive form game.

While no constraints are imposed on the structure of the game, the first part of the paper
imposes some restrictions on the players’ high-order knowledge of overconfidence, motivated
by the economic scenarios for which we want to account. Consider, for instance, a worker
overconfident about her own ability who starts a position in a firm, or an overoptimistic
entrepreneur who applies for a loan in a bank, or an individual with a mistaken perception
of her riskiness applying for an insurance. By construction, it can never be possible that the
informed player is aware that she may be mistaken, or else she would be able to revise her
own self-judgement and correctly assess her own characteristics. In these economic scenarios,
on the other hand, it does not seem reasonable to postulate that the uninformed player will
be unaware of the possibility that her opponent may be overconfident.” However, since the

informed player is unaware of being overconfident, it seems odd to postulate that she will be

4Note that if one understands the beneficial effect of overconfidence on welfare as the result of incorpo-
rating high expectations on future achievements, then such an effect is captured in our framework.

5 After all, the experimental evidence that shows the tendency for overconfidence is readily available to
the managers of any firm, bank, or insurance company.



able to anticipate that her counterpart knows that she is overconfident. Thus the first part
of the paper will focus on instances where the “uninformed” player knows that “informed”
player may be mistaken in her self-perception, but the “informed” player is not aware of
this.

The first conceptual problem is how to construct equilibrium predictions in these in-
stances. On the one hand, in equilibrium the players should correctly conjecture the oppo-
nents’ strategy. On the other hand, the uninformed player’s equilibrium strategies necessarily
depend on the awareness that her opponent may be overconfident, a possibility of which the
informed player is not aware. Thus one can describe games where the informed player would
deem the opponent’s “equilibrium” strategies inconsistent with her understanding of the
game. To substantiate the issue, consider an adverse-selection model, where the informed
player is overconfident. Suppose that she may take a costly course of action intended to
signal that her ability is high. If the opponent is aware of the sender’s overconfidence, she
will discount this signal to incorporate the mistaken self-perception, and adopt a low-profile
strategy which is appropriate vis-a-vis a low-ability sender. If the sender correctly conjec-
tures the receiver’s strategy, she may want to take a less costly course of action. But this
conjecture is in conflict with the belief that the receiver knows that the sender knows her
ability.

In order to construct a framework that rules out this type of conflicts, we imagine a
large population, ideally a continuum, of informed players. The distribution of ability in the
population is common knowledge. While the players do not know whether a given individual
is overconfident, each player knows the distribution of perceived ability in the population of
informed players. The key assumption is that, while each informed player believes that her
perception is correct, she also acknowledges that (the other) informed players are on average
overconfident. Before playing the game, a single informed player is randomly anonymously
chosen to play against the opponent. The opponent’s strategy does not depend on the

characteristics of the player she is facing, but only on the distribution of characteristics



in the population of informed players. Thus no conflict between her understanding of the
game and the anticipation her opponent’s equilibrium strategy can arise in the mind of any
informed player. In practice, she rationalizes the equilibrium choice of her opponent with
the following consideration: “My opponent is acting as if we were not as good as we am,
because there are many overconfident individuals in my population, and my opponent does
not know that I am not one of them...”

Once formally defined equilibrium in the population games, we proceed with comparing
overconfident and unbiased players’ utility. Common wisdom holds confidence advantageous,
so we may believe that overconfident players would be successful. On the contrary, we
show that in any equilibrium of any population game, a player cannot be made better-off
by being overconfident. In fact, while a player’s choice depends on her perceived ability,
her actual utility depends on her actual ability. Each overconfident player plays as if her
ability were higher. In equilibrium she correctly anticipates the opponent’s strategy. The
equilibrium condition implies that the player’s actual utility cannot be larger when she plays
the equilibrium strategy of any player with ability different than hers, regardless of whether
she does so in good faith, or with fraudulent intentions.

This result is not valid when comparing the player’s payoft across different games, or
across different equilibria of the same game. One may compare a game where informed play-
ers are likely to be unbiased, with a game where they are likely to be overconfident. It may be
then be possible that an overconfident player of the second game fares better than unbiased
players in the first game, because the opponent’s strategy is modified by the knowledge that
the informed player is more likely to be overconfident. Such a comparison across different
games, however does not allow to conclude that overconfidence is beneficial, because any
unbiased player playing in the second game would fare better than the overconfident player.

These results may be related to the literature on the value of information initiated by
Hirshleifer (1971), and studied game-theoretically by Kamien, Tauman and Zamir (1990),

and Neyman (1991), among others. It is often argued that, while it is well known that in a



decision problem having less information cannot make a person better off, it may be possible
in games that less informed players are better off, as different information may modify
the opponents’ strategy. Neyman (1991) however underlines that such a result depends on
the comparison of the equilibrium of different games, and that if one compares equilibria
of interactions embedded in the same fully-specified game, a player whose information is
unilaterally refined cannot be worse off in equilibrium. These contributions focus on the
value of a refinement of the information structure, where no conceptual difficulty takes place
in constructing equilibrium play. We show that a result in the spirit of Neyman (1991) holds

also for the case of possibly incorrect information.

The second part of the paper studies overconfidence and equilibrium for any description
of high-order beliefs of overconfidence. We identify the knowledge descriptions that allow
to construct an equilibrium concept immune to introspective conflicts, and for which the
players correctly anticipate the opponents’ strategies. This may be accomplished only in
two instances. The first one, obviously, is the case where both players are unaware of
overconfidence, and share the common belief that the informed player knows her own ability.
The second one consists of the situation where the informed player, while believing that
her perception is correct, knows that the opponent thinks that her perception is mistaken,
the opponent knows this and so on. In such a case, we show that the only equilibrium
concept immune to introspective conflict is the Bayesian equilibrium of an associated game
with subjective priors. Again, we show that in any equilibrium, the actual payoff of an
overconfident player is non-larger than the payoft of an unbiased player. This means that
overconfidence makes any player worse off in equilibrium also in the case that she knows that
her opponent thinks that she is overconfident, or in the case that the opponent is not aware
of overconfidence.

We conclude our analysis by reformulating the model of overconfidence in the language
of Mertens and Zamir (1985) universal types. We introduce a version of universal type that

identifies a player’s payoff-relevant personal characteristic, as well as her beliefs on her own



and the opponents’ characteristics, her beliefs over her own and the opponents’ beliefs and so
on. While it is possible to construct an equilibrium concept where the players’ conjectures
of each opponent type’s strategy is correct, this does not solve the conceptual problem
introduced by our adverse-selection model, but rather restates the problem in a different
language. As each player’s belief about her opponent’s type is embedded in her universal
type, one can construct games and knowledge descriptions identifying profiles of types that
think they are facing some completely fictitious types. As a result the players will not be
able to anticipate the opponents’ strategies.

In order to substantiate this observation, consider again a signalling game where the
sender is overconfident, and unaware that the receiver is aware of overconfidence, the receiver
knows this and so on. The sender’s type embeds the belief to play against a receiver who
is unaware of overconfidence. Such a type adopts a high-profile strategy in response to the
costly signal. Thus in “equilibrium” the sender believes that the receiver plays the high-
profile strategy in response to the costly signal. In fact, our description of overconfidence
knowledge identifies a type of receiver who discounts the sender signal and adopt a low-
profile strategy in response to the costly signal. The sender will not be able to anticipate

the receiver’s choice.

In the recent wave of research on behavioral economics, some contributions have ex-
plored the economic consequences of overconfidence. Camerer and Lovallo (1999) conduct
an experimental study that suggests a relationship between excess entry of new companies
and entrepreneurs’ optimism with respect to their own ability, relative to the ability of
competitors. Benabou and Tirole (1999) consider the problem of search of information of
overconfident individuals with time-inconsistent preferences. In the game between present
and future selves, they show that an overconfident individual may strategically prefer to
ignore some opportunities to gather information about their uncertain payoff, and can selec-
tively decide to forget bad news. Flam and Risa (1998) study a search-theoretical problem

where an individual chooses to take tests whose outcome depends on her own ability, and she



is allowed to override failed tests. Thus overconfident players will eventually hold a higher
status that unbiased ones, but because of longer periods of testing, their ex-ante discounted
utility is smaller than unbiased players’ utility. Benabou and Tirole (2000) characterize
some incentive schemes that a principal may use to manipulate an agent’s self-confidence to
her own benefit. They describe situations where people criticize the performance of their
partners as an instance of a battle for authority in the relationship, and discuss some hum-
ble self-presentation strategies of underconfident agents. Heifetz and Spiegel (2000) give
an evolutionary account to the persistence of overconfident genes in a large class of games
that includes both some games with strategic substitutes and some games with strategic
complements.

This paper is presented as follows. The second section presents the set-up and an in-
troductory example. The third section gives a precise account of the players’ knowledge
of the game and of equilibrium. The fourth section studies population games. The fifth
section derives our results on utility comparison across overconfident and unbiased players.
The sixth section generalized the analysis to any description of player’s overconfidence. The
seventh section reformulates the problem in the language of universal types. Omitted proofs

are in Appendix.

2 Private Information and Overconfidence

In this section we first review the games of private information that are used in information
economics to represent adverse-selection, screening or signaling interactions. Secondly, we
show how to modify these games to account for both private information and mistaken
self-perception.

For simplicity, say that there are only two players. Player 1 has private information about
her own individual characteristics, summarized as 6§ € © (which we will denote for short as

ability).® We may think that player 1 is a worker whose performance is being evaluated by

6Tt is important to stress that the ability € need not be a number, it may indicate a vector or a distribution
over personal characteristic, the modeler may consider appropriate, and each player j’s strategy s; need not



the employer, an entrepreneur who is applying for a credit line, an individual applying for an
insurance. Her counterpart, player 2, is not informed of 6. It is common knowledge among
the players that 6 is distributed according to the distribution ¢ € A(©), which is assumed
to have full support. For simplicity, we assume that the set © is finite. Each player j’s plan
of action is denoted by s; € S;, and we explicit nature’s acts sy in the game, to allow for
the possibility that the players learn about € while playing the game. The nature’s choice is
denoted by i € A(Sp), and it is common knowledge.” The strategy space is S = Sy x S; X Sa,
for simplicity we assume it finite. The players’ payoffs u : S x © — R? depend on the players’
choices s; and sy, on nature’s choice sy and on player 1’s ability. In the case where player 1
knows the value of 6, this situation is represented the 2-player Bayesian game with common
prior G = (0, ¢, S, u, u), the associated equilibrium concept of Bayesian Equilibrium is well
understood.®

In order to represent the case where it is possible that player 1’s perception is mistaken,
first of all, it is necessary to distinguish between player 1’s actual ability, denoted by 6, and
her perception, denoted by 65.° Whenever player 1’s personal characteristics are (01, 0s), she
is informed of 8,.1° For any appropriately assigned order > on the set ©, we can define player
1 overconfident when 6, > 6. The relevant space of player 1’s personal characteristics is thus
O = 62 and we let ¢ € A(O) denote the (full-support) distribution over the pairs (61, 62).
Since we want to separate the economic effect of overconfidence from the psychological benefit
of self-esteem, we assume that the players’ utility depends only on the ability #;, and is

independent of the perception 6,. We denote the players’ utility by v : S x ©; — R?, where

be a single action, but may be a complicated strategy, or even an infinite horizon policy.

"While the informed player may have a mistaken perception of herself, we want to allow for the possibility
that she learns about her ability if presented with clear evidence by nature. Thus it must be the case that
the player cannot be mistaken about the move of nature pu.

8Bayesian games are first defined in Harsanyi (1967), see Fudenberg and Tirole (1991) for the textbook
treatment.

9For the sake of simplicity, we say that the player’s perception 8 belongs to the same space as the player’s
ability 6. Alternatively, we could say that the player’s perception is a measure that belongs to A(©). It is
easy to see that all our results can be extended under this alternative formulation, but that they would be
more difficult to state and interpret.

1ONote that this formulation does not necessarily require that the informed player is overconfident. This
will not be the case in fact, whenever the player’s characteristics 81 and 0, coincide.



©; denotes the first component of space ®. From the game G = (0, ¢, S, u,u), we have
obtained the expanded game G = (0, ¢, S, u,u). Let ¢, denote the marginal of ¢ on the
ability component, and ¢, the marginal of ¢ on the perception component.

Player 1 believes that her perception is always correct. This is equivalent to say that
whenever the game G = (0, ¢, S, i, u) is played, player 1 believes that she is instead playing
the game G° = (@, ¢°, S, u,u),'"" where the distribution ¢° € A(®) is derived from ¢
according to the rule that for any 6, € ©, @" (s, 62) = y(62).1? It is immediate to see that
the operator (-)0 maps Bayesian games into Bayesian games, and that (G°)? = G°. Player
2 is aware that player 1 may be overconfident. Specifically, we assume that player 2 knows
that she is playing game G. Player 1 thinks that player 2 thinks that player 1’s perception
is correct. This is equivalent to say that player 1 thinks that player 2 thinks that she is
playing game G°. At the same time, we say that player 2 knows that player 1 believes that
she knows that the game is G°, and so on...

Before giving a precise account for the players’ knowledge in the game, and showing
the conflict between self-perception and equilibrium, we introduce the issue by presenting a

simple moral hazard game.

Example 1 Player 1 ’s ability #; may be either high (0y) or low (0). Player 2 would
prefer a low-profile policy (yr,) if the opponent’s ability is low, and a high-profile policy (yz)
if the opponent’s ability is high. Before player 2 chooses her policy, player 1 may either
send a costly signal sy, or a default signal s;,. The low-ability sender prefers to send sj,
regardless of the receiver’s choice. Player 1 may be overconfident (but not underconfident):
we assume that ¢(0r,0y) >0, and ¢(0p,01) = 0.

This game, sequential in essence, may be represented by the Bayesian game G = (O, ¢,

S, p, u), where © = {0r,,0x} , So is a singleton set, S1 = {sr, sy}, and S2 = {yryr, yuyr,

11t is not enough to say that each player with characteristics (61, 62) believes that §; = 5, because this
allows for the possibility that she may think that, if her perception had been 6}, # 65, then she would have
believed that her ability would have been 6] # 65.

121t should be immediately pointed out that this description is not equivalent to a Bayesian game with
subjective priors, where player 1’s prior is ¢°, and player 2’s prior is ¢. We will formally study Bayesian
games with subjective priors in a later section.

10



yLym, yaym}: the first (respectively second) component denotes the receiver’s choice after
receiving the signal sy, (respectively sy). The probabilities ¢ and p, as well as the utility
functions u; and us; are immediately constructed from the above description. We assume
that player 2 knows that she is playing the game G = (0, ¢, S, p,u), player 1 thinks that
she is playing game G° = (©, ", S, 1, u) and that player 2 thinks that she is playing G°,
and so on...

In order to demonstrate the conflict between mistaken self-perception and equilibrium,

we make these specific assumptions on the players’ payoffs:

w(sp, ym, On) < ui(sw, yr, 0n) < wi(sp,yr,0n) <ui(sm,ym, On), (1)
w(sm,y,01) <ui(sr,y,0r), foranyy € {yr,yunl}; (2)
{yn} = argmax ¢y (O )uz(se, y, Or) + da(01)uz(se, y, O1), (3)
{yr} = arg max ¢ (0, O )uz(s, y, On) + @01, O )uz(s, y, 0r), and (4)

(5)

ua(s,yr, 0n) < ua(s,ym,0m), wa(s,ym,0r) < ua(s,yr,0r), forse{sy,su}.

By Condition (2) the low-perception sender (6, 61,) plays s;. Given that, by Conditions
(4) and (5), player 2 plays yy upon observing sy if and only if the overconfident (6, 0x)
sender plays sy, and the high-ability (6, 0r) sender plays sy. But if the receiver plays yy
after sy, the (0r,0y) sender plays sy, by Condition (1). Thus, if the players correctly
anticipate the opponents’ choice, player 2 plays yry;, (by Conditions (4) and (5)), and
player 1, regardless of her perception plays s;. In the mind of the overconfident sender,
however the opponent’s strategy yry; is in conflict with what she thinks about the game.
By Condition (3), she thinks that player 2 should play yy after receiving sy, rather than

13
Yr- ©

3 Knowledge of the Game

In order to formally represent the players’ knowledge of the game they are playing, we
introduce an underlying (compact metric) state space €2, and the associated Borel o-algebra

on 2, denoted by B(€2). Let the nature’s choice on the probability space (€2, B(£2)) be denoted

13Notice that, given Conditions (4) and (5), Condition (3) is satisfied whenever ¢(61, 6fr) is large enough.

11



as p. The nature selects the game G(w) as a function of the state of the world. We thus
introduce the measurable surjective relation G : w — G, and the event [G] = {w|G(w) =
G}. Given the game G(w), the nature then selects the individual characteristics (61, 65)
according to the distribution ¢(w), and the strategy so according to the distribution p(w).™
The players’ information with respect to the game may be represented by the (non-necessarily
truthful) information structures P; : Q — B(Q), j = 1,2."> We denote by information
model, the collection Z= (Q, P, P,,p). It will also be useful to introduce the knowledge
operators K : 2% — 2% such that, for any E € 2%, K;E = {w|P;(w) C E} for j = 1,2.
The common knowledge operator CK : 22 — 2% is introduced by defining the sequence of
operators { K"}, >0, where for any n, K™ : 2% — 29 and specifically, K°E = K; ENK,FE, and
K"E = K{(K"'E) N Ky(K"'E) for any n > 1. Let the event “E is common knowledge”
be defined as CKFE = Ny,>0K"E. Let (P A P,) be the finest common coarsening of P; and
Py; it is known that (P, A P»)(w) C F if and only if w € CKE.'

Say that the players are playing an arbitrary game G. In order to identify the description
of players’ knowledge of the game informally introduced in the previous section, we define
the events k{[G] = K1[GY|NK3[G), k3[G] = K;[G°N K5|G], and iteratively, for any n > 1,
k2G| = Kok2 1G], and x7[G] = K17 '[G].'" We are interested in describing the players’

(equilibrium) strategies only for states w that belongs to the event
B[G] =[G] N K1[G"]| N Ks[G] N [Nz (571G N #3(G])]-

We need to show that there exist information models such that the event E[G] is non-

empty. If this were not the case, the task of describing equilibrium play on E[G] would be

14While this implies that the description of the state of the world €2 is incomplete, as it does not capture all
uncertainty in the game, it is easy to see how to expand the state space to account for the nature’s choice of
0> and sg. We adopt this “reduced” formulation of the state space to simplify the analysis, and to underline
that we are focusing our attention on the players’ knowledge of the game.

51t is straightforward to show that if Pj(w) € B, then the restriction of B onto Pj(w) is a o-algebra (in
fact the Borel o-algebra on P;(w)).

16 An introduction to the formal representation of knowledge may be found in Dekel and Gul (1997).

17Tt should be noted that the information correspondence P; identifies the knowledge of player 1 of game
G only in an ex-ante sense, i.e. before that she is assigned her characteristics (61, 62). Her knowledge when
she takes her choice is expressed by the conjuction of P;(w) with her perception 65.

12



meaningless.

Lemma 1 There exist information models T= (£, Py, Ps,p) such that, for any game G, the

event E[G] is non-empty.

The players’ strategies in the game are a function of the underlying state of the world.
Player 2’s strategy consists of the function G5 : 2 — A(S:), measurable with respect to the
information structure P»,. When choosing her action, player 1 is informed of 8, € ©. Her
strategy in the game is thus expressed by the function &, : Q — A(S;)®, measurable with
respect to the information structure P;. We denote by o, any arbitrary element of A(S;)®
and by o9 any arbitrary element of A(Sy). The event that player 1, respectively player 2, play
a given strategy oy, respectively g, are denoted by the notations [01] = {w| &1(w) = 01}
and [os] = {w|G2(w) = 02}.'® Player j is rational if she maximizes her utility on the basis of

her information. Formally, we define the events:

m = {o

Vsg, Ga(s9,w) >0 = sy € argmax E [ua(s, 3’2,91)|P2(w)]} (6)
S2

[Ry] = {w ’V(Qg,sl), 71(s1]02,w) >0 = s € argmsng[uQ(s'l,SQ,Hl)wg,Pl(w)] } (7)

We now turn to the construction of the equilibrium concept. A minimal requirement for an
equilibrium construction is that the players are rational and correctly anticipate each other’s
strategies in the game (in an ex-ante sense). If one does not impose further restriction,
she adopts the stand-point of declaring herself agnostic so as to how these anticipations are
formed. Given the description of knowledge E[G]|, we will define as naive equilibrium any
profile ¢ = (01,02) such that, upon knowing that player 2 plays o9, player 1 rationally

chooses o1, and viceversa. Define the events [o] = [o1] N [02], and [R] = [R1] N [Ra].

Definition 1 For any arbitrary information model T and game G, the profile o is a naive

equilibrium for E|G] if the event E[G]N[R] N [o] N K°[o] is non-empty.

18Unlike Auman and Brandeburger (1995), in this formulation player i does not know the specific action
a; she takes at a certain state w, but only the mixed strategy ;. It assumed that after choosing the state
w (which identifies which game G is played, and which mixed strategies o are taken by the players), the
nature moves again in the game G, operating the randomizing device identified by o. It will be seen that
this formulation greatly simplifies our analysis.

13



We now show that it is possible to construct an information model Z, such that for any
game G, the naive equilibria for E[G] coincide with the subjective equilibria of the Bayesian
game with subjective priors G’ = (O, ¢, ", S, i, u), where ¢ identifies both the move of

nature and the prior of player 2, and ¢° identifies the prior of player 1.

Definition 2 The strategy profile o is a subjective equilibrium of G’ = (©, ¢, ¢°, S, p, u) if
for any 0y and sq, it is the case that o1(s1|02) > 0 only if

0
$1 € arg max Z Z Z ul(so,3’1,32,91)M(80)02(32)M» (8)

sh1€S 0120 52655 5950 ¢2(92)

and for any s, it is the case that oo(s2) > 0 only if

$2 € arg max DD D ualso, 51,55, 61)i(s0) o1 (51]62) (61, 62). (9)

SIQE 2
(01,02)€® 51€51 50€S0

Proposition 1 There is an information model T= (X2, Py, P;), such that for any game G =
(©,¢,S, 1u,u), any strateqy profile o is a naive equilibrium for E[G] if and only if o is a
subjective equilibrium of the game G' = (@, ¢, @°, S, 1, u).*

It is well known that subjective equilibrium exists in all finite Bayesian games with
subjective priors. It follows that there is an information model Z such that for any finite
game G, there exists a naive equilibrium for E[G]. The concept of naive equilibrium however
is unappealing for the purposes of a theory of equilibrium in the presence of mistaken self-
perception because the players cannot introspectively rationalize the choice that they impute
to their opponents. Specifically, suppose that player 1 knows that player 2 is rational. When
playing a strategy o; and believing that player 2 plays strategy s, player 1 may ask herself

the question: “What would player 2 play if she knew that we am playing o177 It may well

19Tf the underlying game G has complete information, it follows that o is a naive equilibrium if and only
if it is a Nash Equilibrium of G. Aumann and Brandenburger (1995) show that, in 2-player games, Nash
Equilibrium conjecture follow from public knowledge of payoffs, rationality, and conjectures, where a player
j’s conjecture is a conditional distribution on the actions of her opponent, player [. Our requirement that each
player j knows that player [ surely plays o; is stronger than just requiring that player j’s belief over player
I’s action coincides with ;. This allows to obtain Nash Equilibrium without requiring public knowledge of
rationality (see also the “preliminary observation” in Aumann and Brandenburger 1995 at page 1167).
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be that the answer to this question is a strategy o, different than os. It is then unclear why
player 1 should maintain her belief that player 2 is playing o5. We define as “sophisticated”
equilibrium, a strategy profile ¢ that is immune to this conflict due to introspective reasoning.
For any game G, and description of knowledge of the game E[G], we say that the profile
o is a sophisticated equilibrium if it is possible that the players’ knowledge of the game
is described by F[G], and at the same time it is common knowledge that the players are

rational, and that the play is o.

Definition 3 For any arbitrary information model T and game G, the profile o is a sophis-

ticated equilibrium for E[G] if the event E[G] N [R] N [o] N CK|[R] N [o]] is non-empty.

We conclude the section by showing that one can construct games such that there does
not exists any equilibrium immune to introspective conflict, one such game is presented in

Example 1.

Proposition 2 There are games G such that, for any information model T = (Q, Py, P,),

there does not exist any sophisticated equilibrium for E[G].

4 Population Games

Imagine a continuous population of informed players indexed in ¢ € I = [0,1]. Each pair
(01,0) is interpreted as the actual characteristics of some individuals in the population
i. The characteristics are assigned by the (measurable) function ¢ : I — O, where (, (%)
denotes the ability of sender 7, and (,(i) denotes her perception. Given the assignment (,

the distribution ¢(¢) : ® — [0, 1] over the pairs (61, 62) is derived according to the rule:

#(¢)(01,02) = v{i: ((i) = (01,02)}, (10)

where v denotes the Lebesgue measure. The sequence of moves in population games is as
follows. At the first period, a single informed player ¢ € I is randomly chosen by nature

according to the uniform distribution on [0, 1]. At the second period, player i plays against
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nature and player 2 a Bayesian game G = (0, ¢, S, i, u). The strategy space of each player
i coincides with Sy, her utility is denoted by u‘(s, () and coincides with u;(s, (7)) for each
strategy profile s € S. We have associated to each Bayesian game G a population game
I'=(0,1,¢,u, S, u).

As in the previous section, we represent the players’ knowledge of the game by means
of an information model Z, and a measurable surjective relation T' : w — T, the relation T
includes the relation ¢ : w — ¢. For any T and ¢, we define the events [I'] = {w|T(w) = I'},
and [(¢)] = {w|@(C(w)) = ¢(¢)}. The nature first chooses the population game T', then she
selects player 7 according to v, and finally she takes y in the game G. The knowledge and
common knowledge operators are constructed in analogous way as in the previous section.
For any game I' = (©, I, (, u, S, u), we restrict attention to information models Z for which
the collection (O, I, i, S, u) is common knowledge on [I'].

We want to represent instances where player 2 is not able to distinguish the identity of the
players in the pool I, and has no information about the assignment of any single player i € I,
but at the same time, she knows the aggregate distribution of the individual characteristics

(01, 02). Thus we restrict attention to information models satisfying the following assumption.

Assumption 1 The information model T= (2, (P")icr,, P2, p) is such that for any game
I' and any state w € [I'], Po(w) C [¢(C)]; and such that for any v-preserving isomorphism
v : B[0,1] — B[0,1], any set B € B[0,1], and any set ©' C O, p({(+(B)) € O'|Py(w)) =
p(C(B) € ©'[Py(w)).

The key assumption of our construction is that, while each informed player ¢ believes that
her ability (;(i) coincides with perception (5(i), she also acknowledges that (the other) in-
formed players are on average overconfident. Specifically we restrict attention to information

models that satisfy the following assumption.

Assumption 2 For any game T, the information model I= (2, P?, Py, p) is such that for
any w € [T], and any i € I, P'(w) C {w' : &(w’)(z) = ((y(0),¢o(0)} N [@(CY)], where the
function ¢+ 0,1] — © is such that C'(j) = C(j) for any j # i, and ¢'(i) = (C2(i), C(0)).
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Under these assumptions, by construction, any player i is overconfident (and unaware of
this) whenever (;(7) # (,(7). It is immediate to see, in fact, that for any perception 6., at
any state w such that C,(w')(i) = 6s, it is the case that w € K;{w|¢,(w')(i) = 65}, regardless
of player #’s actual ability {,(w’)(7). Nevertheless, the following Lemma verifies that there
are information models satisfying our assumptions, where the players always share common

knowledge of the aggregate distribution of individual characteristics.

Lemma 2 There is an information model I= (Q, (P")ic1, Ps,p) satisfying Assumptions 1

and 2 such that for any game T =(©,I,(, u, S,u), it is the case that [T'|C[p(C)|NCK[p(()].

For any i € I, we let the function &° : Q — A(S;), measurable with respect to the
information structure P!, be the strategy of player i. As in the previous section, player 2’s
strategy is described by &5 : 2 — A(S2) measurable with respect to P,. We denote by o1 any
arbitrary element of A(S;)’ and by o5 any arbitrary element of A(Ss). Since the players in
population I are indistinguishable, it is natural to restrict attention to symmetric strategy
profiles, where all players with the same ability and assessment take the same strategy.
Formally, a strategy profile o € A(S;)! x A(S,) is symmetric if for any pair (i,5) € I?, it
is the case that o = 0/ whenever (,(i) = (5(j). The definitions of the events [o1], [02], [o],
[Ry], [R] for any 4, and [R] are immediately extended from the analogous definition in the
previous section, and so are the definitions of naive and sophisticated equilibrium. Because
of Lemma 2, for each game I', we are interested in the naive and sophisticated equilibria
associated with the event [I'], under information models satisfying Assumptions 1 and 2.

Given any population game I' = (0@, I, (, u, S, u), we derive the 2-player Bayesian game
G = (©,¢,¢°, S, 1, u), where for any pair (A1, 0,), the nature’s choice (and player 2’s prior)
is @(01,05) = v{i: (i) = (61,05)}, and the prior of player 1 is ¢°(02,0:) = v{i : (5(i) = 05}
Each symmetric strategy profile o of a game I' identifies a unique strategy profile o’ of G’
according to the rule o, = oy, and ¢/ (-|f2) = o' if (,(i) = 5. Up to equivalence classes,
each strategy profile o’ of G’ identifies a symmetric strategy profile o of I'. Proposition 3

below shows that, within the restrictions imposed by Assumptions 1 and 2, it is possible
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to construct information models, such that the symmetric naive equilibria of any game
I’ coincide with the subjective Bayesian equilibria of the associated game G’. Moreover,
the symmetric naive equilibria of any game I' coincide with the symmetric sophisticated
equilibria of I'. This immediately implies the existence of sophisticated symmetric equilibrium
in all population games with finite characteristics and strategy spaces. Thus Proposition 3
allows us to conclude that the framework of population games resolves the conflict between

overconfidence and equilibrium identified by Example 1.

Proposition 3 There is an information model = (Q,(P")icr, Py, p) satisfying Assump-
tions 1 and 2, such that for any game T' = (©,1,(,S,pu,u), the set of symmetric so-
phisticated equilibria for '] coincides with the set of symmetric naive equilibria for [T],
which is isomorphic (up to equivalence classes) to the set of subjective equilibria of the game

G = (97 (b(C)v (¢(C>>07 S, U)

5 Utility Comparisons

Now that we are endowed with a set-up that settles the conflict between mistaken beliefs and
equilibrium, we can compare the equilibrium payoffs of overconfident players with unbiased
ones. We will show that in equilibrium, the payoff of an overconfident player cannot be
larger than the payoff of an unbiased one.

Intuitively, consider any symmetric equilibrium o of any population game. Take two
players ¢ and j whose actual ability is 6. Say that player i correctly perceives her ability,
and that player j is overconfident and perceives her ability to be 8 > 6. In equilibrium,
both players correctly anticipate player 2’s strategy os. Each player’s expected utility when
choosing her strategy depends on her perceived utility, and therefore on her perceived ability;
but her actual equilibrium utility depends on her actual ability, not on the perceived one.
The overconfident player j chooses a strategy ¢’ that maximizes the expected equilibrium
payoff of a player whose actual ability is #’, while the unbiased player i chooses a strategy o

that maximizes the actual expected equilibrium payoff of a player whose ability is 6. Since
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both player’s actual ability is in fact €, it cannot be the case that the overconfident player
j fares strictly better than the unbiased player 7. As this result holds for any equilibrium of
any population game, it holds a fortiori for any refinement motivated by robustness or by a
specific sequential structure of the underlying game.

In order to formalize the result, for any game I' = (©, [, (, S, p, u), and any symmetric
equilibrium o, we introduce the notation u’(o) which identifies player i’s actual payoff (in
ex-ante terms) at the equilibrium o. It is easy to see that

for any 4, u'( Z Z Z u'(sg, $1, S2, C )/L(SO)Ui(Sl)O-Q(SQ).

52652 51€51 50€50
Proposition 4 In any symmetric equilibrium o of any population game I' = (O, I, (, S,
u), for any level of ability 0 € O, and any pair of players (i,7) such that ((i) = (0,60) and
C(j) = (0,0") with 0" # 0, it must be the case that u'(o) > u!(o).

Proof. Consider any symmetric equilibrium o of any population game I' = (O, I,
¢, S, u, u). By Proposition 3, o identifies a naive equilibrium o for E[G]. For any w €
[T] N [R1] N K*[oy), player i plays strategy &' (-|w), such that 6*(s;|w) > 0 only if

s € arg max Z Z u1(S0, 87, 2, 02) 14 (S0) o2(82). (11)
SQGSQ S0E€So
It follows that any s; € Supp(c’) must satisfy Condition (11).
For any arbitrary level of activity @, pick any pair of players (i,5) € I? such that

C1(1) = (i) = (1(j) = 0, and (,(j) = 0, where ¢ # 0.
Since ¢ (i) = ¢;(j) = 0, it follows that for any profile of pure strategies s, u'(s, () = v/ (s,{) =
uy(s, 0).
Condition (11) implies that for any s; € Supp(c?),
Z Z u1(So, 1, S2,0) 11 (S0) o2(S2) Z Z u1 (S0, 81, S2,0) 11 (s0) oa(s2), for any s} € Sy,
$9€8S9 s0E€SpH 89€S59 s9€SH

this condition holds a fortiori for any s} € Supp(c?). It follows that

u'(o) = Z o'(s1) Z Z u1 (S0, 81, S2,0) (o) o2(s2)

s1€Supp(ot) $9€82 50€S0
> Y ) DS wlso, s, s2,0)1(s0) oa(s2) = w (o).
sh€Supp(ad) $2€8S9 s0€Sp
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Proposition 4 compares the utility of overconfident and unbiased players for any fixed
game and equilibrium. When comparing payoffs across different games, one may specify a
game where informed players are likely to be unbiased, and a game where they are likely
to be overconfident. It may be then be possible that an overconfident player of the second
game fares better than unbiased players in the first game, because the opponent’s strategy is
modified by the knowledge that the informed player is more likely to be overconfident. Such a
comparison across different games, however, does not allow to conclude that overconfidence is
beneficial, because any unbiased player playing in the second game would fare better than this
overconfident player. Similar considerations hold also for utility comparison across different
equilibria of the same game.?’ Nevertheless it is interesting to notice that an increment of the
likelihood that informed players are overconfident may make all players in the population ¢
(overconfident and unbiased) better off. To substantiate this point, we present the following

example.

Example 2 Consider a family of population games I', indexed in a € (0,1), o # 1/2.
For each o, say that © = {01,0g}, and that for any ¢ € I, it is the case that (,(i) = 0.
At the same time however (,(i) = 0y for any i > «, and (,(i) = 0y for any i < a. Thus
each player i > «a is overoptimistic. The strategy set Sy is a singleton set, S; = {A, B}
and Ss = {C, D}. The payoffs are as represented below.

0] C[ D] [6u] C[ D |
Al 1,0] 0,2 Al 20] 02
B| 02] 20 Bl 02 20

20When comparing the outcome of a Bayesian game involving only a single unbiased player with the
outcome of a game involving a single overconfident player, as we have already pointed out, the meaning of
equilibrium analysis is unclear. But if one accepts the concept of naive equilibrium, she obtains that, while
the overconfident player of the second game may fare better than the unbiased player of the first game, it
is also true that a (hypothetical) unbiased player called to play the second game would fare even better (cf.
Proposition 8).
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For any fixed «, the game I', has a unique equilibrium. For v < 1/2, in equilibrium,
the overoptimistic players from population ¢ must mix between A and B. Thus the unique
equilibrium o , is such that oo(C) = 1/2, that 0'(4A) = 0 whenever i € [0,«), and
o'(A) = 1/[2(1 — )] ifi € (a,1]. The players’ payoffs are us(o) = 1, u'(o) = 1 if
i € [0,a), and u'(o) = [3 — 4a]/[4(1 — )] when i € (a,1]. For a > 1/2 the unbiased
players from population ¢ must play a mixed strategy in equilibrium. Thus the unique
equilibrium o |, is such that o5(C) = 2/3, that o'(B) = 1/[2a] whenever i € [0,«), and
that 0?(B) = 0 if i € (a,1]. The players’ payoffs are us(o) = 1, and u'(o) = 2/3 if
i€[0,a), u'(o)=1/3 whenie (a,1].

For any arbitrary o € (0,1/4) and o € (1/2,1), the overoptimistic players of game
I’y achieve a higher utility than the unbiased players of game I',». Also, the payoff of
overoptimistic players is increasing in 1 — «, the fraction of overoptimistic players in the
population . In this game, an increment of the likelihood that the players in population ¢
are mistakenly too optimistic (as long as the resulting likelihood is above 3/4) makes all

players better off. o

6 General Knowledge Descriptions

This section studies self-perception and equilibrium in 2-player games, for general descrip-
tions of the players’ knowledge of the game. In any such a scenario, the players play a game
G = (0,¢,5,u,u), but, in order to account for player 1’s possibly mistaken perception,
we say that player 1 believes to play the game G°. A description of the player’s knowledge
of the game is generated by the events [G], and [GP], and by the iterated application of
the operators Ki, K5, as well as complementation and intersection. Given the space {2,
and the relation G : w — G, for any game G = (O, ¢, S, u,u), we consider the space
Q¢ = [G]U[G"]. We introduce the algebra?! AL = {0,[G],[G"],Q¢}, and for any n > 1,
the algebra Ag generated by Ag 'U{K;E| E € A% ', i = 1,2}. The algebra that includes

21 An algebra of € is a collection of subsets of € that contains (2, that is closed under complementation
and finite intersection.
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all the descriptions of players’ knowledge of the game G is Aq = US| A% .2 Tt is known (cf.
Aumann 1999, or Hart Heifetz and Samet 1996) that not all the lists in Ag are consistent:
there are lists of events whose intersection is empty for any information model Z. To avoid
triviality, for any game G, we restrict attention to lists g € Ag, such that there is a model
7 for which the event E;(G) = N2 lg is non-empty. Since it is also known that whether a
list lg generated by the event [G] is consistent or not depends only on the combinations of
knowledge and logic operators, and is independent of the generating event, we will drop the
subscript from the notation /g, with the understanding that the notation [ identifies the list
le when in conjunction with a specific game G.

First we extend Proposition 1 to any instance where the informed player is overcon-
fident, and her opponent is aware of this, regardless of the players’ high-order knowl-
edge of overconfidence. We introduce the collection of lists A = {l € A| for any G,
0 # E(G) C [G] N K{[G" N K5[G]}. Recall that for any game G, the game G’ denotes the

associated game with subjective priors.

Proposition 5 For any list | € A, there is an information model T such that for any game
G, the profile o is a naive equilibrium for F;(G) if and only if o is a subjective equilibrium

of G'.

Secondly we show that if player 2 is unaware that player 1 may be overconfident, then

the naive equilibria of any game G coincide with the Bayesian equilibria of the game G =

(©, ¢, S, ,u). Welet U= {l € A for any G, ) # E;(G) C [G] N K1[G°] N K3[G]}.

Proposition 6 For any list | € U, there is an information model I such that for any game
G, the profile o is a naive equilibrium for Fi(G) if and only if o is a Bayesian equilibrium

of G.

The final and most important result of this section identifies under which conditions

sophisticated and naive equilibrium coincide. This may occur in two instances. First, it may

22An example of a list of events in Ag is the list le = {[G], K1[GY], K3[G], (x1]|G],K3[G]),
(k1G], k5[G]), ...}, which represent the knowledge description studied in the third section.

ey
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be the case that, while they are truly playing game G, the players share common knowledge
that they are playing the game G°, so that not only the informed player is unaware to be
overconfident, but also her opponent is unaware that she could be overconfident, and so on.
In this case, sophisticated, naive and Bayesian equilibrium all coincide. Secondly, and more
interestingly, it may be the case that the players “agree to disagree” on the game that they
are playing. L.e. player 1 is overconfident and unaware of that, player 2 knows that player 1
is overconfident, player 1 thinks that player 2 thinks that player 1 is overconfident, and so
on. In this case, naive and sophisticated equilibria of game G coincide with the subjective
equilibria of the associated game with subjective priors G’. For any other description of the
players’ knowledge of overconfidence, there are games that do not have any sophisticated
equilibrium. This result shows that a model of Bayesian equilibrium with subjective priors is
appropriate to represent overconfidence if and only if the overconfident player, while unaware
of being overconfident, is aware that the opponent thinks that she is overconfident, and so
on.

We denote by [° the list | € A such that for any game G, F;(G) = [G] N CK[GY],
and by I* the list [ such that for any game G, Ei(G) = [G]N (Ny>0K"[G]) , where K°[G] =
K1|G% N K3[G], and for any n > 0, K*[G] = K; K" ![G] N K, K" 1G].2

Proposition 7 Forl € {I° I*} there is a model T such that for any game G, the profile o is
a sophisticated equilibrium for E(G) if and only if o is a naive equilibrium for E;(G). For
any other list [, and model L, there exist games G where a sophisticated equilibrium does not

exist for Ei(G).

One may be interested in utility comparisons between overconfident and unbiased players
in this general environment. It is easy to show that in any naive equilibrium of any game,
regardless of the players’ knowledge of the game, if player 1 is overconfident, she obtains
a non-larger payoff than if she is unbiased. As shown by Proposition 7, the concept of

naive equilibrium coincides with the concept of sophisticated equilibrium when both players

231t is immediate to show that [ and [* are consistent.
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are unaware of overconfidence, or when they “agree to disagree” on overconfidence. This
means that overconfidence makes any player worse off in equilibrium also in the case that
the opponent is not aware of overconfidence, and in the case that the opponent is aware of
overconfidence, but the informed player knows this. For any strategy profile o, any ability
0., and any perception 65, let the actual utility of the informed player with characteristics
(01,02) be
ur(0,601,605) = > > > ui(so, 51,52, 01)(50)0(51/02)05(52).
$2€S55 51€51 5050

Proposition 8 For any list | € A, any information model Z, and any game G, in any naive
equilibrium for E)(G), for any level of ability 01, and any perception 6, it must be the case

that U1(O', 91, 91) Z ul(a, 91, 92)

7 Games with Universal Types

This section shows how universal types can be used to describe self-perception.?* We propose
a straightforward extension of Brandenburger and Dekel (1993) construction that includes
in a player’s type also individual objective characteristics (i.e. ability), as well as beliefs
over own ability and opponents’ ones, and higher-order beliefs. Since the construction of
universal types is well understood, proofs and unnecessary calculations are omitted, and
made available upon request to the author.

For any player j = 1,2, let the space of j’s ability be a complete separable metric space
0;. Tteratively set X; = ©; x O, and for any n > 1, X,,,1 = X,, X [A(X,,)]. Let a type t; be a
hierarchy (0o, 61, 02;...) € ©; X (x5 A(X,,)), and define Tjo = O, x (X2 ;A(X,,)) . For each
space X,,, the above definition of type includes more than one possible specification of beliefs,
the first one is identified by 6, another is the marginal of 6,,41; on X,,. In order to avoid a
conflicting definition, we restrict attention to coherent types. Formally, a type ¢, is coherent

if for any n > 1, the marginal distribution projected by 6,41; on X,, coincides with 6,,;. Let

24The concept of universal types has been first introduced by Mertens and Zamir (1985), see also Brande-
burger and Dekel (1993) and Epstein and Wang (1996).
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the set of coherent types be T};. One can show that each coherent type uniquely identifies a
system of beliefs with respect to her own and the opponent’s type. The sequence (615, 02;, -..),
in fact, identifies consistent probability measures on the denumerable sequence {X,} of
finite cylinders. Since each cylinder is a Polish space, t; identifies through Kolmogoroff
Extension Theorem a unique (canonical) probability measure on the space A(Tjo x T jg).>
Completing the relation with the identity on the space ©;, this construction identifies a
(unique) homeomorphism f; : Tj; — ©; x A(Tjo x T_jy).2% This result, however, permits any
coherent type to identify a belief that she or her opponent is not coherent. To avoid this
inconsistency, we restrict attention to types that satisfy “common knowledge of coherency.”
Formally, for any n > 1, let Tj,.1 = {t € Ty : fj(t)(Tjn X T—;jn) = 1}, and let the universal
type space of player j be T; = N2, T},. In order to verify that each universal type identifies
a unique belief over the state of nature, and an opponent’s universal type, one can show that
there is a (unique) homeomorphism g; : Tj — ©; x A(T; x T_;), generated by f;.*

Given the space of individual abilities © = ©; x O,, and the space of universal types
T =T, x T, in order to obtain a fully specified game, we need to specify a nature’s prior
p € A(T), a strategy space S = Sy x S1 X Sy, a move of nature y, and payoffs u : Sx © — R
A strategy in the game I' = {©, T, p, S,u} is an profile ¢ = (01, 03), where for each j, the
function o; : T; — A(S;) is measurable. The actual utility of the players is expressed by the
function u : © x S — R?; for any mixed strategy o, and any player j, the actual utility of

type t; when playing against ¢_; is:

ui(t,0) = Y > u;(o, 8)o(s1]t)oa(salta)u(50)-

S1 GSl 52652
Some types t; of player j include a mistaken belief about their ability, and their perceived

payoff may differ from their actual payoff. Specifically, for any mixed strategy o, any player

25See for instance Dudley (1999).

26This result is an extension of Proposition 1 in Brandenburger and Dekel (1993), where the reader can
find additional details.

27This result is a simple extension of Proposition 2 in Brandenburger and Dekel (1993).
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j of type t; perceives that her utility is:
u;(ty, o) = / 0N uilgi(t5)(0), )o1(s1[tr)oa(salta) (s0)dg; (£).
81€851 89€89
For this construction, the most appropriate definition of equilibrium requires that all types
choose a payoff-maximizing strategy, and not only those are selected with positive prior

probability.?®

Definition 4 An equilibrium of game I' is a profile 0 = (01,02), where for each player
j € {1,2}, the strategy o; is such that o;(s;|t;) > 0 only if
s € arga [ L 3 )00 s )

In order to show how this construction relates to our analysis of overconfidence, we
reconsider the game G = (0,¢, S, u,u) presented in Example 1. Recall that player 1’s
ability belongs to the set © = {6,605}, that player 2’s ability is irrelevant, that ¢(6r,0) =
0, that S; = {sr,sy}, that So = {yryr, ynyr, yrym,yaym}, and that we are interested
to the equilibrium play associated with the knowledge description identified by the event
E[G] =[G] N Ki[G] N K2[G] N [N (k1[G N £[G])].

In the language of universal types, one can show that the event E[G] identifies a type-
distribution p = (p1,p2) € A(T) such that for any (01,0;) € O, p assigns probability
¢(01,05) to the pair of types (t1,t2) such that 691 = 61, 611 = 6(02), 612 = ¢, where
the notation ¢(+) identifies the distribution degenerate on -, and that the high-order beliefs
are recursively defined as follows. Let 621 = 811 - 6(011) - 6(¢py), 622 = 8(612) - d(01,611),
where the last term assigns probability ¢(61,02) to the state {61,6(62)}, and for any n > 2,
a1l = Ot - 0(6n1) - 8(6na - (02,611, .., 601)), Onsiz = 6(6n2) - d(01,611, ..., 6p1.1), Where
the terms ¢° and ¢ are derived as before. For simplicity, say that ¢(6;, 0r) = 1, and for

2%In the context of correlated equilibrium, Brandenburger and Dekel 1987 introduce the distinction between
ex-ante equilibrium (which requires that each player maximizes ex-ante payoff), and a-posteriori equilibrium
(which requires that also null- probability types choose payoff-maximizing strategies).
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any given s € O, let t1[fy] denote the type t; € Supp(p;) such that 811 = 6(62), note that
P2 is degenerate.

The key observation is that for any 6, € ©, type t;[fs] identifies through g; the belief
that player 1 is of type t)[02] and that player 2 is of type t5, where &, = 62, &}, = 6(62),
81y = @, 0y = 011 - 6(611) - 6(y), 9y = 6(612) - @Py(02,611), and for any n > 2, 6,1, =
1 = 0(6m1) - 0(Os + Ba(02, 671, v, O3y, 6:1—{—1,2 = 8(6a) - P2(02, 65, ..., 5;71,1)- Since the types
t1[0r], t1[0x], and ¢, identify Bayesian game with common prior G = (O, ¢,, S,u), any
Bayesian equilibrium o of game I" must be such that o (¢5)(yLyn) = 1, that o1 (¢[01])(s1) = 1,
and that o1(t}[0g])(sg) = 1. Player 2, on the other hand, is of type to which identifies the
belief that player 1 is of type t¢1[0;] with probability ¢(6,6r), and of type t1[0y] with
probability ¢(0r,0p). Since she believes that #; = 6 with probability 1, in any Bayesian
Equilibrium she must play o(t2)(yryr) = 1.

The formulation of the game with universal types allows us to construct a Bayesian
equilibrium that predicts that at any state w € E[G], player 1 plays sy when believing her
ability to be high, regardless of the fact that player 2 will respond to that choice by playing
yr. This occurs because state w identifies a type of player 1 that believes to play against
a type of player 2 which is different than the type of player 2 which is identified by state
w. It follows that player 1 cannot anticipate the strategy played by player 2. In this sense,
this reformulation does not solve the problem introduced by Example 1 and formalized by
Proposition 2. While it is true that in any Bayesian Equilibrium of the game with universal
type, the assignment of strategies to types is common knowledge among the players, it is the
case that player 1 cannot anticipate player 2’s choice because she believes to play against a

completely fictitious type of player 2.

8 Appendix

Proof of Lemma 1. Pick an information model Z = (2, Py, P>, p) such that for any
game G, and any w € [G], Py(w) C [G], and P;(w) C [G°]. It is immediate to see that
[G] C K>[G] N K1|GP]. To show the remaining part of the claim, we proceed by induction.
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First notice that [G] C K3[G] and [G] C K;[GY], imply [G] C K»[K1[G°] N K3[G]] = k3[G];
while [G] C K;[GY], and [G°] C K5[G?] imply [G] C K,[K;[G°] N K»[G°]] = k3[G]. Secondly,
notice that [G°] C K;[G°]. Thus for any n > 1, it follows that [G] C }*[G] implies
[G] C K7[G]. Also [G°] C K5[GY], and [G] C K>|G], thus for any n > 1, it follows that
[G] C k5 1[G°] implies [G] C k3[G°]. The result is then obtained by induction. m

Proof of Proposition 1. Take the information model I such for any game G = (O,
¢, S, i, u), and any strategy profile o of G, the event [G] N [¢] is non-empty, and such that
for any w € [G] N [0], Pi(w) = [0] N [GY], and that P(w) = [¢] N [G]. By Lemma 1, E[G] is
non-empty. Also, [G] N [o] C K°[o], and thus the profile o is a naive equilibrium if and only
if the event [G] N [o] N[R] is non-empty. Suppose that this is the case: there is a w such that
Gw) =G, &(w) = o, and that for every sq, 52(s2,w) > 0 only if

s2 € argmax E [ua(s1, 83, 61)[ P (w)] (12)
)

and for every 6,, and s, 61(s1|02,w) > 0 only if

s1 € argmax E [ua(s}, s2,61)[62, P (w)] . (13)

Since 6(w) = o, it follows that, by plugging the expression Py(w) = [¢]N[G] in Condition (12)
we obtain that o must satisfy Condition (8), and by plugging the expression P;(w) = [o]N[G’]
in Condition (13), we obtain that ¢ must satisfy Condition (9). It follows that o is a
subjective equilibrium of G' = (©, ¢, &, S, u, u). Conversely, if o is a subjective equilibrium
of G', then it must satisfy Conditions (8) and (9). It follows that for any w € [G] N [g], it is
the case that w € [R]. Thus o is a naive equilibrium of G. =

Proof of Proposition 2. Consider the game G = (0, ¢, S, i, u) presented in Example
1. For any w € K5[G] N [Ry], for any distribution &,(w) € A(S;)®, where the conjecture &,
is supposed to be measurable with respect to P, it is the case that 5(sg,w) > 0 only if

Sg € argmax Z Z Ua(81, S2,61)E5(51(02)|w) (61, 02).
2 (9,,0,)€@ 5165
It follows that for any w € K3[G] N [Ry), it is the case that &2(yryr|w) = 1. So that letting
o2(yryr) = 1, we obtain that K3[G] N [Rz] C [o2]. So for any strategy o, € A(Ss), 0 # o2,
it follows that K>[G] N [Ry] N [oh] = 0.
For any w € K;[G°] N [Ry], for any distribution & (w) € A(Ss), where the conjecture
&, is supposed to be measurable with respect to P, for any 6, € O, it is the case that
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71(s1(02),w) > 0 only if

/ ¢0(€1792)
e amgmax Y03 w500, 0006 (safe) LY
%1 01€0 59685y ¢2( 2)
= argmax Z uy (84, 82, 01)&1 (s2|w).
1 SQGSQ

It follows that for any w € K;[G°] N [Ri] N Ki[oy], for any 6y € {01,05}, it is the case
that 61(sp|fs,w) = 1. So letting o1(s|f2) = 1, for any 0y € {0,0y}, we obtain that
Ki[G°l N [Ry] N Ki[o] C [o1]. So for any strategy o) € A(S)®, o) # o4, it follows that
Ki[G°I N [Ry] N Ky[oo) N [)] = 0.

For any w € K5[G°]| N [Ry] N K|oy], instead, it is the case that oa(sq,w) > 0 only if

Sp € arg IIlS?JX ¢2(9H)UQ(SL7 3/27 QH) + ¢2(9L)UQ(SL7 3/27 QL)

It follows that 75 (yryr,w) = 0 for any w € K5[G°] N [Rs] N Kz[o1]. Therefore, it must be the
case that K1K2[G0] N K1 [RQ] N KlKQ[O'l] N Kl[O'Q
(01,09) it is the case that

] = 0. It follows that for any strategy pair

Ko[G] N K1 [GY N K1 K [GO N [R] N o] N o] N Ky o) N K [Ry] N K Ky [o] = 0.
Thus, for any strategy pair o, the event E[G] N [R] N [oc] NCK ([R] N [o]) is empty. m

Proof of Proposition 2. By Condition (10), and by Assumption 2, it follows that for
any pair (61,05) € O,

d(C)(01,02) = v{j€[0,1]:¢'(j) = (01,02)}
= v{j €0,i) U(i,1]: C'(4) = (61,62)}
= v{j€[0,9) U (i, 1]:((j) = (01,02)} = &(C)(01,02).

Now pick an information model I such that P, satisfies Assumption 1, and such that for
any i € I, it is the case that P'(w) = Py(w) N {w : (') (i) = ((o(i), (o(@))}; since this set
is non-empty [ is well-defined, and satisfies Assumption 2. We have shown that for any
w € [[], for any i, P/ (w) C Py(w), it follows that Py(w) A (AierPH(w)) = Pa(w) C [¢(C)],
where the latter relation follows by Assumption 1. This implies that for any w € [T], it is
the case that w € CK[¢(()]. m

t,

Proof of Proposition 3. Take the information model [ such for any game I' =
(0,1,¢,S, u,u), and any symmetric strategy profile o of T, the event [I'] N [0] is non-empty,
such that for any w € [['| N [o], Pa(w) = [o] N [#({)], such that for any v-measure preserving
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isomorphism ¢ : B[0,1] — B[0,1], for any set B € B[0,1], and for any set © C O, it
is the case that p(((«(B)) € ©'|P(w)) = p({(B) € ©'|Py(w)), and such that for any i,
Pi(w) = {o' : C(@)(i) = (Co(0),¢o())} N Po(w). Since for any i, [¢(¢)] = [¢(¢")]; it follows
that I satisfies Assumptions (1), and (2).

Fix a game I' = (0,1, (, S, u,u), and say that o’ is a subjective equilibrium of the game
G' = (0,6(¢), (¢(¢))° S, u,u). Up to equivalence classes o’ identifies a symmetric strategy
profile o of I'. Say that w € [['] N [0]. It is the case that w € [Ry] if and only if the strategy
Fa2(-,w) = oa(-) is such that d5(s2,w) > 0 only if:

/Z Z us(s0, 51, 85, €1 (1)) p(50) 0" (51|w)dv (7)

$1€851 s9E€Sy

Sp € arg meagc E;
S

Py(w) (14)

By construction, the strategy o) € A(S))® satisfies the rule o(s1]02) = 0'(s1|w) whenever
(5(i) = B4. Since player i is selected from pool 7 according to the uniform distribution on [0, 1],
since for any isometry ¢ : B[0,1] — B[0,1], p(¢(«(B)) € ©'|P(w)) = p({(B) € ©'|Py(w)) for
any set B € BJ0, 1], and for any set ©' C O, and since Pa(w) C [¢(()], it follows that the pair
distribution ¢(¢) is a sufficient statistic of player 2’s information on the assignment ¢. Thus
Equation (14) can be summarized by aggregating the players in ¢ across the characteristics
(01, 62). Substituting in the Equation, the expressions for ¢({) and for ¢/, we obtain:

sy €argmax > Y Y up(so, 51,55, 01)1 (s0) ) (51]62) (01, 62). (15)

shes.
2502 (91 92) €0 s1€851 sgESy

This condition coincides with Condition (8), which ¢’ satisfies by definition. It follows that
[T]N[o] C [R2]. With respect to the players in 7, we can say that for any i, and any w € [['|N[o],
it is the case that w € [R'] if and only if player i plays &' (-|w) such that &'(s;|w) > 0 only if

sy € arg maxz Z Z 80,8'1,82,91)#(80)02(82|W)p(g1(i):€1|C2(i))

€3
F1591 9 €O 52650 5050

= arg max z; z; ur (0,81, 82, Ca (7)) 1t (50) 02 (2|w). (16)
829€59 s0E€S)

By construction, &'(-|w) = o%(-) = o’(+|¢5(4)), thus o, satisfies Condition (16) for every i if
and only if ¢’ satisfies Condition (9) for every 6y, which is the case by definition. It follows
that [T'] N [o] C [Ry].

The above arguments have shown that [['] N [¢] C [R]. Since it is also the case that
[T] C [¢(¢)], it follows that for any w € [['] N [o], P2(w) N [R] # 0. To show that for any
i, it is also the case that PI(w) N [R] # 0, pick an arbitrary i, and any arbitrary state w’
such that (') = ¢*. By construction, ' € P! (w). Moreover, by construction, the 2-player
subjective-priors Bayesian game associated with the game I'(w’ ), coincides with G'. It follows
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that [['(«')] N [o] € [R]. Given our construction of I, the event [['(w')] N [o] is non-empty, it
follows that there is a state w’ € Pi(w) N [R].

Because of the above two results, we can refine the information structures (P?);c; and
P, by defining Py(w) = Py(w) N [R], and Pi(w) = P¥(w) N [R], for every i € I. The event
[R] incorporates in its definition the information structures (P);c; and P, we define the

A

event [R] which is to be understood as the event that the players are rational relative to
the structures (P?);c; and P,. We want to show that [[] N [o] N [R] = [I] N [o] N [R]. Since
[N [o] C [Ry], it is rational for player 2 to play o3 on the event [I'| N [o]. It follows that for
any player ¢, the information that player 2 is rational does not add anything to the belief that
she plays o5, and so for any w € [[| N [o], E [u'(s1, sy, 01)|P'(w)] = F [ui(sl, sh, 91)|]5’(w)] :
Conversely, since for any i, [['] N [o] C [R'], it is the case that for any w € [[] N [o],
B [ua(s1, 54, 01)| Po()] = B [ua(s1, 55, 01)| Py(w)]

Since by construction, for any i, P*(w) C Py(w), it follows that Py(w) A (/\iglf’i(w)> =
Py(w) C [R] N [o] that is to say w € CKJ[[R] N [o]]. Wrapping up, we have shown that
[T N [o] C [R] N CKJ[[R] N [o]], since by construction, [I'] N [o] is non-empty, we conclude
that if o’ is a subjective equilibrium of the game associated with I', then o is a sophisticated
equilibrium of T'.

The fact that if the profile o is a sophisticated equilibrium of I' under any information
model / (and in particular information model I ), then it is also a naive equilibrium of I' under
I trivially follows from the fact that [[]N[R] N [c]NCK ([R] N [e]) C [[]N[R] N [o] N K°[a].

We are left to show that if ¢ is a naive equilibrium of I' under the information model I ,
then o’ is a Bayesian equilibrium of the associated game G'. Since [['|N[o] € K°[o], the profile
o is a naive equilibrium if and only if the event [I']N[o]N[R] is non-empty. Suppose that this is
the case: there is a w such that I'(w) =T, 5(w) = o, and that for every sy, G5(s2, w) > 0 only

if 55 € argmaxy E |ua(si, sh,01)|Pao(w)| = E [us(s1, sh, 61)|Pa(w)], and for every 4, and s,
0'(s1,w) > 0 only if 5, € argmaxy E [ui(sﬁ,32,€1)|pi(w) = F[u'(s}, s2,01)|P'(w)] . Since
d(w) = o, it follows that, by plugging in the expressions for P»(w) and P'(w) we obtain
Conditions (16) and (15). This implies that ¢’ must satisfy Conditions (8) and (9), i.e. o’ is
a subjective equilibrium of the game G'. =

The proofs of Proposition 5 and 6 are analogous to the proof of Proposition 1. Similarly
the proof of Proposition 8 is easily derived from the proof of Proposition 4. These proofs,
available upon request to the author, are omitted.

Proof of Proposition 7. The proof of the first part is analogous to the proof of
Proposition 3, and is thus omitted. For the second part, consider the following game G = (©,

31



¢, S, u, p), such that © = {0r,0x}, #(0r,0n) = 1, p is degenerate, S and u are represented
below (assume that z > 2).

0o CID] [fu] C|D]
AJ10[0.1 A [[x0]0x
B (0,1 1,0 B 0,110

We want to show that for any list [ other than {° or I*, and any information model I,
there is a game G that does not possess any sophisticated equilibrium for F;(G). Also, note
that while the pair distribution ¢ does not have full support, it is easy to see how to extend
this result to the case of games with generic full support distribution.

By definition, the distribution ¢” is such that ¢°(8,0y) = 1. For any oy € A({A, B}),
and any o9 € A({C, D}), define the event

E(O’l,O'Q) = [0'1] N [Rl] N Kl[GO] N Kl[KQ[GOH N Kl[[RQ] N [0'2] N KQ[UlH.

The first step is to show that for any o1(A4) # z/[z + 1] and any o09(C) # z/[x + 1],
E(01,03) = 0. Pick in fact any o1(A) > x/[z+1], then K5[G°| N Kz[o1]N[Rs] C [02(C) = 0].
But K;[K3[G°|N Kso1]N[Rs]] C K»[GO)N Ks[o1]N[Ry], and K, [GO]N K, [o2(C) = 0]N[R] C
[01(A) = 0]. Thus E(01,02) = 0, for any o1(A) > z/[z+1]. Conversely, for o1(A) < z/[x+1],
then K5[GY)N Kalo1]N[Ry] C [02(C) = 1], but K;1[G| N K;[o2(C) = 1]N[Ry] C [o1(A) = 1],
and E(oy,02) = 0, for any 01(A) < z/[z + 1]. The proof that E(oy,05) = 0 for any
02(C) # x/[x + 1] is identical. It follows that Ky[E(o1,02)] C Kalo1(A) = x/[z + 1]]. For
any w € [G] N K[G] N Ky[E(01,02)], it follows that w € [02(C) = 0]. This proves the claim
for any list [ such that {[G], K1|G°], K2|G], K1[K2[G]]} C I. To show the claim for any list
[ such that {[G], K;[G"], K2|G],~ K;[K3[G]]} C I, note that for any prior p, any state w,
and following posterior p{ K3[G]|Pi(w)}, we can set x arbitrarily large so as to get again
w € [o2(C) = 0.

Letting F' = Ky[E(01(A) = z/[x + 1], 02(C) = z/[z + 1])] N K3[G] N [Ra], the above
passages also show that for any w € [¢] N K [EY N K[G°] N [Ri] N Ki[o2(C) = 0] N K1 [G°] N
[Ry] implies that w € [01(A) = 0]. This shows the claim for any list [ such that {[G],
K1[GY, K3[G], K1[K>|G]], Ko[K1[GY)], Ko K1[K2[G]]]} C L. Letting E? = K;[E']N K [G°]N
[R1], one obtains that w € [¢] N K»[E?] N K5|G] N [R,] implies that w € [o1(C) = 1], and
shows that the claim holds for any list [ such that {[G], K; ([G°] N K5 ([G] N K{[G"])),
K> ([GIN K ([GY] N K»[G])) , Ky (Ko [Ky [Ko[GO])]]} C L.

By repeating the construction ad infinitum, the claim is proved. m
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