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Abstract

Error correction models are widely used to estimate dynamic cointegrated systems. In most
applications, estimated error correction models are reduced form models. As a result, nonstruc-
tural speed of adjustment coefficients are estimated in these applications. A single equation
instrumental variable method can be used to estimate a structural speed of adjustment coeffi-
cient. This paper develops a system instrumental variable method to estimate the structural
speed of adjustment coefficient in an error correction model. This method utilizes Hansen and
Sargent’s (1982) instrumental variable estimator for linear rational expectations models, and is
applied to an exchange rate model with sticky prices.
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1 Introduction

Davidson, Hendry, Srba, and Yeo’s (1978) Error Correction Model (ECM) is widely used to estimate

1

dynamic cointegrated systems.” As the Granger Representation Theorem shows (see Engle and

Granger (1988)), an ECM representation exists when the variables are cointegrated and vice versa.>
The standard ECMs are reduced form models just as VAR models are as pointed out by Urbain
(1992) and Boswijk (1994,1995). As in VAR models, identification of structural shocks is an
important issue for structural ECMs. King, Plosser, Stock, and Watson (1991), Jang (2000), and
Jang and Ogaki (2003) develop methods to identify structural shocks with short-run and long-run
restrictions.?

Another important issue for the structural ECM is estimation of the speed of adjustment toward
the long-run equilibrium level. This paper focuses on this issue. In a structural ECM, at least one
linear combination of variables gradually adjusts to the long-run equilibrium level with a constant
speed of adjustment. In general, the speed of adjustment coefficient in a structural ECM is different
from the speed of adjustment coefficient in its reduced form ECM. As an example, we will show
that they are different in an exchange rate model with sticky prices. In the exchange rate model,
the structural speed of adjustment coefficient is not a deep structural parameter, but it is equal
to one minus the first order autoregressive coefficient for the log real exchange rate.? Hence the
structural speed of adjustment coefficient can be used to compute the half-life of the real exchange
rate, and is a parameter of interest. However, the reduced form speed of adjustment is a nonlinear
function of the structural speed of adjustment and the interest elasticity of money demand. Hence
the reduced form speed of adjustment coefficient in the ECM cannot be directly compared with
the half-life estimates of real exchange rates in the literature (see, e.g., Rogoff (1996) for a survey,
and Kilian and Zha (2002) and Murray and Papell (2002) for more recent works).

Standard estimation methods for ECMs such as Engle and Granger’s two step method and

Johansen’s (1988) Maximum Likelihood method estimate the reduced form speed of adjustment

! An alternative method is levels VAR without imposing unit roots. Estimators which are based on a levels VAR
are more robust but are usually less efficient than those based on an ECM if the restrictions regarding nonstationarity
and cointegration imposed by the ECM are true.

2The theorem should be used with caution because there exist economic models in which the regularity conditions
of the theorem do not apply as shown in Ogaki (1998). However, the model in this paper is subject to this criticism.

3The word Vector ECM (VECM) is usually used when identification for structural shocks is studied.

*As explained later, the coefficient cannot be estimated by Ordinary Least Squares with measurement errors.
However, the structural coefficient is equal to one minus the first order autoregressive coefficient of the true value of
the log real exchange rate even with measurement errors.



coefficient rather than the structural speed of adjustment coefficient. A single equation instru-
mental variable (IV) method can be directly applied to a gradual adjustment equation. The main
purpose of this paper is to develop a system method that combines the single equation method
with Hansen and Sargent’s (1982) IV method for linear rational expectations models.

In the single equation method, an IV method is applied to a gradual adjustment equation
that describes how a variable slowly adjusts to the long-run equilibrium level in the structural
ECM. The system method combines the single equation method with Hansen and Sargent’s (1982)
method which applies Hansen’s (1982) Generalized Method of Moments (GMM) to linear rational
expectations models. The system method is more efficient than the single-equation method when
the restrictions implied by linear rational expectations models are true. On the other hand, the
single equation method is robust to misspecification in the other equations of the structural ECM.
Therefore, we can form a test statistic of the restrictions by comparing the results from the two
methods.

These methods are applied to an exchange rate model with sticky prices. The model is a one-
good version of Mussa’s (1982) model, which may be viewed as a stochastic discrete time version
of Dornbush’s (1976) model. This model includes a gradual adjustment equation, in which the
domestic price adjusts to the long run equilibrium level determined by Purchasing Power Parity
(PPP) with rational expectations. We refer the speed of adjustment coefficient for this equation as
the structural speed of adjustment coefficient. Because the basic idea of the ECM is that variables
adjust to their long run levels, it is of interest to examine whether or not the standard estimation
methods of the ECM can be used to estimate the structural speed of adjustment coefficient. We
will show that, in the exchange rate model, the standard ECM estimation methods do not recover
the structural speed of adjustment coefficient.

Data are for the exchange rates of currencies of Canada, France, Germany, Italy, Japan, the
United Kingdom, and the United States. Using the single equation method, we obtain positive
estimates for the structural speed of adjustment coefficient in most cases.

We then apply the system method to the same data set. In this case the speed of adjustment
coefficient can be estimated from the gradual adjustment equation for the domestic price and the
rational expectations equation for the exchange rate. We form a specification test by comparing
the estimates for the speed of adjustment coefficient from these two equations.

Structural ECMs have been considered by several authors. Urbain (1992) investigates sufficient



conditions for weak exogeneity for structural ECMs that are similar to ours. Boswijk (1994,1995)
and Hsiao (1997) discuss the relationship between the ECM and structural simultaneous equations
models. However, unlike Urbain and Hsiao, we do not assume that exogenous variables are observed
by the econometrician. In our empirical application, it is not natural to assume exogeneity of
any variable in the cointegrated system. Papell (1995) derives a reduced form ECM from an
exchange rate model that is similar to ours. However, the real exchange rate is nonstationary
in his model unlike ours. He applies Phillips’ (1991) ML estimator to the reduced form ECM.
Dolado, Galbraith and Banerjee (1991) and Gregory, Pagan, and Smith (1993) derive structural
ECMs from linear quadratic models. They discuss the difficulties associated with the application of
standard estimation methods such as Engle and Granger’s (1987) two-step method and Johansen’s
(1988, 1991) Maximum Likelihood (ML) method to the ECM. They do not combine their method
with Hansen and Sargent’s (1982) IV method for linear rational expectations models.

The rest of this paper is organized as follows. In Section 2, a structural ECM is presented and
its relationship to a reduced form ECM is discussed. Section 3 discusses the single equation and
system methods for the structural ECM. Section 4 presents an exchange rate model in which the
domestic price slowly adjusts toward the Purchasing Power Parity (PPP) level. In Section 5, the
model of Section 4 is augmented to include measurement errors. Section 6 presents our empirical

results for the system methods. Section 7 contains concluding remarks.

2 Structural Models and Error Correction Models

In this section, we discuss the relationship between structural models and ECMs. Let y; be an
n-dimensional vector of first difference stationary random variables. We assume that there exist p
linearly independent cointegrating vectors, so that A’y, is stationary, where A’ is a (px n) matrix
of real numbers whose rows are linearly independent cointegrating vectors. Consider a standard
ECM

Ay =k+GA'y, + F1Ay, + FoAy, g + ..+ Fpyipi1 + Vi (1)

where k (n x 1) vector, G is a (n X p) matrix of real numbers, v; is a stationary n-dimensional
vector of random variables with E [Vit1|Hi—7] = 0. In many applications 7 = 0, but we will give

examples of applications in which 7 > 0. There exist many ways to estimate (1). For example,

"We will treat more general cases in which the expectation of v¢y1 conditional on the economic agents’ information
is not zero, but the linear projection of v¢11 onto an econometrician’s information set (which is smaller than the



Engle and Granger’s two step method or Johansen’s Maximum Likelihood methods can be used.

Many applications of standard ECMs give elements in G structural interpretations as param-
eters of the speed of adjustment toward the long-run equilibrium represented by A’y;. It is of
interest to study conditions under which the elements in G can be given such a structural interpre-
tation. In the model of Section 4, the domestic price level gradually adjusts to its PPP level with
a speed of adjustment parameter b. We will investigate conditions under which b can be estimated
as an element in G from (1).

In most applications, (1) is a reduced form model. A class of structural models can be written

in the following form of a structural ECM:
CoAy; 1 =d+ BA'y, + C1Ay, + CoAy, ; + ...+ CpYi—pt+1 + W1 (2)

where C; is a (n x n) matrix, d is an (n x 1) vector, and B is an (n x p) matrix of real numbers.5
Here Cq is a nonsingular matrix of real numbers with ones along its principal diagonal, u; is a
stationary n-dimensional vector of random variables with E [up+1|Hi—7] = 0. Even though cointe-
grating vectors are not unique, we assume that there is a normalization that uniquely determines
A so that parameters in B have structural meanings. For the rest of this paper, we assume that
the gradual adjustment toward the long-run equilibrium in the first equation in Equation (2) is of
particular interest to the researcher. Therefore, the first row of B gives the structural parameters
of interest.

In order to see the relationship between the standard ECM and the structural ECM, we premul-
tiply both sides of (2) by Cal to obtain the standard ECM (1), where k = Cald, G = CalB, F;
=C, lc;, and vy = Cy Yw;. Thus the standard ECM estimated by Engle and Granger’s two step
method or Johansen’s Maximum Likelihood methods is a reduced form model. Hence it cannot
be used to recover structural parameters in B, nor can the impulse-response functions based on v
be interpreted in a structural way unless some restrictions are imposed on Cy.

As in a VAR, various restrictions are possible for Cy. One example is to assume that Cg is
lower triangular. If Cg is lower triangular, then the first row of G is equal to the first row of B, and
structural parameters in the first row of B are estimated by the standard methods used to estimate

an ECM. In the exchange rate model in this paper, the restriction that Cq is lower triangular is not

economic agents’ information set) is zero.
SIf the deterministic cointegration restriction (see Ogaki and Park, 1998, for this terminology) is not satisfied,
then a linear trend term needs to be added to Equation (2).



attractive. However, as we discuss in Section 4.3, the structural ECM from the one-good version of
the exchange rate model does not satisfy the restriction that Cy is lower triangular for any ordering
of the variables. Even though some structural models may be written in lower triangular form,

our example suggests that many structural models cannot be written in that particular form.

3 The Instrumental Variables Methods

Because standard methods of estimating reduced form ECMs may not recover the structural pa-
rameters of interest in B, we consider two instrumental variables methods. The single equation
method simply applies an IV estimator to a gradual adjustment equation. The system method
combines the single equation method with Hansen-Sargent IV estimator. These methods do not

require restrictions on Cy.

3.1 The Single Equation Method

First, we consider a single equation method, which applies an IV method to a gradual adjustment
equation. Imagine that we are interested in estimating the first row of Equation (2). In some
applications, the cointegrating vectors are known, and thus the values of A are known. It should
be noted that ordinary least squares may be applicable in this case of known cointegrating vectors.”
In other applications, the values of A are unknown. In the case of the unknown cointegrating
vectors, a two-step method that is similar to Engle and Granger’s (1987) and Cooley and Ogaki’s
(1996) methods can be used. In this two-step method, the cointegrating vectors are estimated in
the first step.

In the first step, we estimate A, using a method to consistently estimate cointegrating vectors.
There exist many methods to estimate cointegrating vectors. Johansen’s Maximum Likelihood
(ML) Estimators for Equation (1) can be used for this purpose. If p is equal to one, estimators
based on regressions that are as efficient as Johansen’s ML estimators such as Phillips and Hansen’s
Fully Modified Estimation Method (1990), Park’s (1992) Canonical Cointegrating Regression, and
Stock and Watson’s (1993) estimators can be used. Ordinary Least Squares estimators are also
consistent when p is equal to one, but not as efficient as these estimators. We assume that Ar is

the first step estimator, where T is the sample size, and A7 converges to A at a faster rate than

"In our exchange rate model without measurement errors, ordinary least squres can be applied to an autoregressive
regression for the real exchange rate to estimate the structural speed of adjustment coefficient.
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In the single equation method, an IV method is applied to

Ayr 41 = di — coaAY2 111 — oo — iy Ayniy1 + b1A'yy (3)

+ClAY, + Ay, + .+ le)Atherl + U141

where y; ¢ is the i-th element of y;, dq is the first element in d, c(l)i is the i-th element of the first
row of Cg, by is the first row of B, c} is the first row of C;, and wuy; is the first element of u;.
When E [u1,t4+1|Hi—~] = 0, any stationary variable in the information set available at time ¢ - 7 that
is correlated with variables in the right hand side of Equation (3) can be used as an instrumental
variable. In the case of the known cointegrating vectors, the known values of A are used in (3). In
the case of the unknown cointegrating vectors, Ar obtained in the first step replaces A in Equation
(3). Because Ar converges to A at a faster rate than T1/2, the first step estimation does not affect

the asymptotic distributions of the second step estimator under regularity conditions.

3.2 The System Method

In this section, we propose an econometric method that combines our single equation method
with Hansen and Sargent’s (1982) procedure to impose nonlinear restrictions implied by rational
expectations models.

Let y: = (y1,:Y2,6:Y3.4,y4¢) be 4 x 1 vector of random variables with a structural ECM rep-
resentation (2). Assume that there exists only one linearly independent cointegrating vector A
such that A'y, is stationary. In the following, y; is partitioned into four subvectors, and each
subvector is given a different role. For expositional simplicity, we assume that each subvector is
one dimensional so that y; is a 4 x 1 vector, and that y; has only one cointegrating vector.

The first element of y; represents a gradual adjustment as in Equation (3), with nonzero by
where F [u1,t+1|Hi—r] = 0. We assume that the second element of y; is related to a discounted

sum of expected future values of the fourth element in the following form:

Ayogi1 = da — g1 AY1 141 — GsAY3 111 — CouAYai (4)

o0
+ By 6 Ayajia| 1] + e
=0

8Usually, At converges at the rate of T, but there are cases where Ar converges at the rate of T2/3(see West,
1988).



where ¢ is a positive constant that is smaller than one, and « is a constant. As pointed out
by Hansen and Sargent, many linear rational expectations models imply that one variable is a
geometrically declining weighted sum of expected future values of other variables.

Hansen and Sargent’s (1982) methodology is to project the conditional expectation of the dis-
counted sum, Z;’;O 57 Ayst+j+1, onto an information set Hy, which is a subset of I;, the economic
agents’ information set. Let E[\Ht] be the linear projection operator conditional on an information

set Hy which is a subset of I;. Replacing the conditional expectation by the linear projection gives

Ayogi1 = dy — 1 AY1 141 — G3AY3111 — CouAYa (5)

o
+ B 6 Ayasy i Hi) + uzp

=0
where
© . o~ © .
U1 = et + E[Y 6 Ayasjia |l — EDY 6 Aya sy jia | Hil (6)
=0 j=0

Because H; is a subset of I;, we obtain E[uuH]Ht] = 0.
The current and past values of the first difference of the third element of y; are used to form
the econometrician’s information set H;. Since E [-|H¢] is the linear projection operator onto Hy,

there exist possibly infinite order lag polynomials 5(L), v(L), and £(L), such that

E[AyS,t+l|Ht] = 5(L)Ay3,t (7)

E[Ay4,t+1|Ht] = ’Y(L)A?JS,t (8)

EY " 6 Ayasrja| Hi] = €(L)Ays, 9)
=0

Then following Hansen and Sargent (1980, Appendix A), we obtain the restrictions imposed on

S L) — 6L (6 §B(8)] 1 LB(L
£(r) = 2D =L@~ SO~ LA(D) o)

Substituting (9) into (5) gives the equation

Ayo i1 = da — 1AV — CG3AY3 11 — CGaAY (11)

+ b (L)Ays i + u2 41



where £(L) is given by (10). We now make an additional assumption that the lag polynomials
B(L) and (L) are finite order polynomials, so that

Ays i1 = B1Ays: + BoAysi—1 + ... + BpAY3t—p1 + U341 (12)

Ayspr1 = 714y + V2AY34 1+ oo+ Y 1AY3 - pr2 + Usip (13)

where E’[ui,Hl]Ht] =0 for ¢ = 3, 4. Here we assume (L) is of order p and (L) is of order p-1
in order to simplify the exposition, but we do not lose generality because any of 3; and v, can be

zero. Then as in Hansen and Sargent (1982), (10) implies

€0 =7(0)[1 —85(3) " (14)
&= ()1 = 6B8(0)] 1 (Bjp1 + 0841 + o +0PTIB,) + (5 + 07 4 + 0P

forj=1,..,p
In the SECM form (2), we have B = [ —5,0,0,0), A = [1,—1,—1,0],

_ | 1 e 034
Co=1709 o 1 0| (15)
0O 0 O 1
and 1 1 1 1
Ci1 G2 €G3 Coa
0 0 ag 0
C; 0 0 B 0 (16)
0 0 v O

for j = 1,..., p, where v, = 0.

We have now obtained a system of four equations that comnsist of (3), (11), (12), and (13).
Because Efu;¢|I;—-] = 0 and E [ui+|Ht] = 0, we can obtain a vector of instrumental variables zj ¢
in Iy, for uy; and z;¢ in Hy for vy (1 = 2, 3, 4).

Because the speed of adjustment b for y; ; affects the dynamics of other variables,? there will be
cross-equation restrictions involving b in many applications in addition to the restrictions in (14).
Using the moment conditions E|z;tu; ] = 0 for i=1,...,4, we form a GMM estimator, imposing the

restrictions in (14) and the other cross-equation restrictions implied by the model.

9Note that only y1 ¢ adjusts slowly, but b affects dynamics of other variables because of interactions between 1 4
and those variables.



Given estimates of cointegrating vectors from the first step, this system method provides more
efficient estimators than the single equation two step method proposed in previous section as long

10" On the other hand, the single equation two

as the restrictions implied by the model are true.
step method estimators are more robust because misspecification in other equations does not affect
their consistency. The cross-equation restrictions can be tested by Wald, Likelihood Ratio type,
and Lagrange Multiplier tests in the GMM framework (see, e.g., Ogaki 1993a). When restrictions

are nonlinear, Likelihood Ratio type and Lagrange Multiplier tests are known to be more reliable

than Wald tests.

4 An Exchange Rate Model with Sticky Prices

In this section, we present a simple exchange rate model in which the domestic price adjusts slowly
toward the long-run equilibrium level implied by Purchasing Power Parity (PPP). This model is
used to motivate a particular form of a structural ECM in the previous section. The model’s two
main components are a gradual adjustment equation and a rational expectations equation for the
exchange rate. The single equation method in Section 3 is based only on the gradual adjustment
equation. The system method utilizes both the gradual adjustment and rational expectations

equations.

4.1 The Gradual Adjustment Equation

Let p; be the log domestic price level, pf be the log foreign price level, and e; be the log nominal
exchange rate (the price of one unit of the foreign currency in terms of the domestic currency).
We assume that these variables are first difference stationary. We also assume that PPP holds in
the long run, so that the real exchange rate, p; — p;j — e, is stationary, or y; = (p¢, e, pi) is
cointegrated with a cointegrating vector (1,-1,-1). Let u =E[p; — p} — e], then p can be nonzero
when different units are used to measure prices in the two countries.

Using a one-good version of Mussa’s (1982) model, the domestic price level is assumed to adjust

slowly to the PPP level

Apir1 = b(p+pi + e —pe) + Ey[pf 1 + esv1] — (0F +er) (17)

10 As suggested by the results in de Jong (2001), the first step estimation can affect the asymptotic distributions of
the second step estimator because of the nonlinear restrictions in the system method. However, because the equations
are linear in this application, the reqularity conditions are likely to hold.



where Azy11 = xp41 — x4 for any variable z;, F[- |I;] is the expectation operator conditional on
I;, the information available to the economic agents at time ¢, and a positive constant b < 1 is
the adjustment coefficient. The idea behind Equation (17) is that the domestic price level slowly
adjusts toward its PPP level of pj + e;, while it adjusts instantaneously to the expected change in
its PPP level. The adjustment speed is slow (fast) when b is close to zero (one).

From Equation (17), we obtain
Apir1 = d+b(p; + et —pe) + Apyyq + Aeprr + et (18)

where d = b , ep41 = E¢[pf i +eir1] - (i1 +ei41). Hence 441 is a one-period ahead forecasting
error, and Eleiy1]|]:] = 0. Equation (18) can be referred as the structural gradual adjustment
equation. In the application of this paper, the gradual adjustment equation implies the first order
autoregression structure for the real exchange rate. To see this, let s; = p; + e — p: be the log real

exchange rate. Then Equation (18) implies
S¢p1 = — d+ (1 - b)St — E+1 (19)

We define the half-life of the log real exchange rate as the number of periods required for a unit
shock to dissipate by one half in this first order autoregression. Without measurement errors, the
coefficient b can be estimated by Ordinary Least Squares directly from (18). In the presence of
measurement error, instrumental variables are necessary. We will consider cases with and without

measurement error.

4.2 The Exchange Rate under Rational Expectations

We obtain the other equations necessary for the system method estimation by adding the money

demand equation and the Uncovered Interest Parity condition. Let
m¢ = Om + pr — hiy (20)

i = Z: + E[€t+1’It] — € (21)

where m; is the log nominal money supply minus the log real national income, 7; is the nominal
interest rate in the domestic country, and ¢ is the nominal interest rate in the foreign country. In

(20), we are assuming that the income elasticity of money is one. From (20) and (21), we obtain
Elevallt] — ee = (1/h){0m + pr — we — RE|(pi11 — pi)| L]} (22)

10



where

wr = my + hrf (23)
and 7} is the foreign real interest rate:
i =it = Elpall] +pg (24)

Following Mussa, solving (17) and (22) as a system of stochastic difference equation for E[ps ;|14

and Ele;y;|I] for fixed t results in

o0

pe = B[Fy| 1] = Y (1 = Y {E[Fij|Li—j] = E[Fjlli—j-1]} (25)
7j=1
bh+ 1 .1
€= — EF\|I;] — pf — AL (26)
where
Fr=(1-06)) 6wy (27)

and 0 = h/(1 4 h).
We assume that w; is first difference stationary. Since § is a positive constant that is smaller

than one, this implies that F'; is also first difference stationary. From (25) and (26),

Cbh+ 1l

o (1 = by {E[Fj|I;—j] — B[Fy—jI;—j1]} (28)

et +p; — pr
j=1

Since the right hand side of (28) is stationary,'! e; 4+ pf— p; is stationary. Hence Equation (28)

implies that (p¢, e, py) is cointegrated with a cointegrating vector (1,-1,-1).
4.3 Hansen and Sargent’s Formula

In order to obtain a structural ECM representation from the exchange rate model, we use Hansen

and Sargent’s (1980, 1982) formula for linear rational expectations models. From (26), we obtain

bh +1
bh

(1- 5)E[Z & Awyyja | I] — _Apt+1 Apfiq + €ett1 (29)

A =
€t+1 : bh
7=0

where ecy41 = L [E(Fyi1|li1) — E(Fya1|h)], so that the law of iterated expectation implies
Elect+1|ly] = 0. The system method in Section 5 is applicable because this equation involves a

discounted sum of expected future values of Awy.

'This assumes that E+(Ft)-E¢+—1(F:) is stationary, which is true for a large class of first difference stationary
variable F'; and information sets.

11



Hansen and Sargent (1982) propose to project the conditional expectation of the discounted
sum, E [6j Aya4j+1|1¢), onto an information set Hy, which is a subset of I;, the economic agents’
information set. Let E [ | H¢] be the linear projection operator conditional on an information set
H; which is a subset of I;.

We take the econometrician’s information set at ¢, H¢, to be the one generated by the linear
functions of the current and past values of Apy. Then replacing the economic agents’ best forecast,

B[ 6/ Awyyj+1/14], by the econometrician’s linear forecast based on H; in Equation (29), we

obtain
bh +1 ~ o 1 .
Aepyr = ——(1~ 5)E[JZ::0 0! Awtyjr[Hel = 3 Aper1 — APy + Uzt (30)
where
Uil =€ +bh+1(1—5)E [(iaﬂAw ; |I)—E(i5JAw 1| Hy)) (31)
2,t+1 = Ee,t+1 oh t - t4j+1 |4t = t4j+1 41t

Because H; is a subset of Iy, we obtain E[u2,t+1|Ht] = 0.
Since E [-|Hy) is the linear projection operator onto Hy, there exist possibly infinite order lag

polynomials (L), v(L), and (L), such that

~

E[Ap} 1 |Hi) = B(L)Ap; (32)

E[Awe|HY) = (L) Ap} (33)

E> "0 Awpyjia |Hy) = £(L) Ap; (34)
j=0

Then following Hansen and Sargent (1980, Appendix A), we obtain the restrictions imposed by

(30) on &(L) -

—§L1 — -171 _
e(1) = W= 79O = 9801~ L1 5

Assume that linear projections of Apf,; and Aw;i1 onto H; have only finite number of Apj
terms:

E[Ap; | Hy] = B1Ap; + ByApi_y + oo+ B,ADE_, 1 (36)
E[Awt+1|Ht] = Y1 Ap; + V2 Ap{_1 + o + V1 AP[_pio (37)

Here we assume (L) is of order p and (L) is of order p-1 in order to simplify the exposition, but

we do not lose generality because any of 8; and 7, can be zero. Then as in Hansen and Sargent

12



(1982), equation (35) implies that §(L) = & + &§1 L + ... + €, LP, where

€0 =7(0)[1 - 5(8)]™" (38)

& =v(0)[1—8B)] " (Bjp1 +0Bj01 + - + P TIB) + (v + 07+ o+ 0P y)

forj=1,...,p.
Thus

ED>" Awipjpa[Hi] = € 0pF + EAp} 1 + .+ E,0DF 1 (39)
§=0

Using (18), (30), (32), (33), and (39), we obtain a system of four equations:

Apir1r = d+ Apyq + Degrr — b(pe — pp —e) +ur e (40)
Aeryr = _%Apt+1 — Apiyy + o Apf + aloApf g + .+ afpApf, 1+ Uz (41)
Apiiy = B1Ap; + BoAp;_q + oo + BpApi_piq T U3t (42)
Awir = 11 Ap; + Y2 Api_1 + o+ Vpo1 APf_pyo + Us i (43)
where o = %(1 —0) and uy 41 = E41-

Given the data for [Apii1, Aepy1, Apir1, Awer1]’, GMM can be applied to these four equations
as discussed in Section 3.2. There exist additional complications for obtaining data for Aw;y1 as
we discuss in Section 4.4.

The exchange rate model can be written in the SECM form (2) as in the system of equations

(40)-(43): we have y¢ = [Apsy1, Aeri1, Apfiq, Awia]), B=[—15,0,0,0]', A = [1,—-1,-1,0],
1 -1 -1 0
Sl 110
C=1"% 0o 1 0o (44)
0 0 0 1
and
00 0 O
100 ag 0
C; = 00 8 0 (45)
00 7, 0

for j =1,...,p. For any nonzero constant 1, ¢(1, -1, -1) is also a cointegrating vector. However,
the first row of B in (2) is b only when 1 is normalized to one.
In the exchange rate model in the previous section, b is a structural parameter of interest.

For the purpose of estimating b in the model, the restriction that Cy in (2) is lower triangular is

13



not attractive. However, as is clear from Equation (44), the structural ECM from the one-good
version of the exchange rate model does not satisfy the restriction that Cy is lower triangular for any
ordering of the variables. Even though some structural models may be written in lower triangular
form, this example suggests that many structural models cannot be written in that particular form.

It is instructive to observe the relationship between the structural ECM and the reduced form

ECM in the exchange rate model. Because

bh/(bh+1) bh/(bh+1) 0 0
1| —1/(bh+1) bh/(bh+1) -1 0
Co = 0 0 1 01’ (46)
0 0 0 1
G = C;'B = [-b2h/(bh + 1),b/(bh + 1),0,0]'. Comparing G and B shows contemporaneous

interactions between the domestic price and the exchange rate affect the speed of adjustment
coefficients.  The speed of adjustment coefficient for the domestic price is b in the structural
model, while it is b2h/(bh+1) in the reduced form model. The error correction term does not
appear in the second equation for the exchange rate in the structural ECM, while it appears with

the speed of adjustment coefficient of b/(bh+1) in the reduced form model.

4.4 Applying the System Method to the Exchange Rate Model

In order to apply the system method to Equations (40)-(43) of the exchange rate model in the
previous section, we need data for Awy, which requires the knowledge of h. Even though h is
unknown, a cointegrating regression can be applied to money demand if money demand is stable in

the long-run as in Stock and Watson (1993). For this purpose, we augment the model as follows:
me = Op + pt — Wi + Gy (47)

where (,, ; is the money demand shock, which is assumed to be stationary, so that money demand
is stable.

By redefining m; as m¢ — ¢, ;, the same equations as those in Section 4.2 are obtained. For
the measurement of Aw; used in the system method, we note that the ex ante foreign real interest
rate can be replaced by the ex post real foreign real interest rate because of the Law of Iterated

Expectations. Using the money market clearing condition (47), we obtain
Awp1 = Appr — hAippr + hAG — h(Apiys — Apiyq) (48)
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With this expression, Aw; can be measured from price and interest rate data without data for
monetary aggregate and national income once b is obtained. This is useful because the latter data

are not available at the monthly frequency for many countries.

5 A Measurement Model

We apply the single equation and system methods to the exchange rate model in Section 4, using
quarterly exchange rate and aggregate price data for Canada, France, Germany, Italy, Japan, the
United Kingdom, and the United States from 1974:Q1 to 2001:Q1. In the model, we assume that
vt = (Apig1, Aegy1, Apf ) is cointegrated with a known cointegrating vector (1,-1,-1). This
assumption may cause a problem in applications of the model to data in the post-Bretton Woods
period because many researchers have failed to reject the null hypothesis of no cointegration using
similar data sets. Because more favorable evidence for the assumption is often found when a longer
sample period is used, the failure to reject no cointegration may be due to low power of the no
cointegration tests in small samples (see, e.g., Rogoff, 1995 for a survey). Because the evidence
is mixed, a sensitivity analysis with respect to this assumption is in order. For the purpose of a
sensitivity analysis, we employ Cheung and Lai (1993) and Fisher and Park’s (1991) model with

measurement errors to allow the cointegrating vector to be different from (1,-1,-1).

5.1 Measurement Errors and the Single Equation Method

Let pf® and p;"™ be the log measured domestic and foreign prices, which are related to the true

prices by
Pt =0+ pr+ vy (49)
P =0+ v (50)
where F;_1[v¢] = 0 and F;_1[vf] = 0. We assume that true prices follow the model of Section 4

and satisfy PPP in the long-run. Then

Py — der — (0/9")py = (0 =070/ 9") + d(pr — er — pp) + [vi — (¢/97)V]] (51)

is stationary. Hence, y; = (p}", e, p;’"")’ is cointegrated with a cointegrating vector (1, -¢, -¢/¢*).

In the first step, we run a cointegrating regression of the form

Pt = Yo+ e+ Yap, ™ + ¢y (52)
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where 1, = ¢, 1y = ¢/¢*, and (, is stationary with mean zero.
In order to obtain the second step estimator, we use Equation (18) and Ap}t | = ¢Ap1+Aviiy

to obtain

Apilty = d = b[pi" — der — (¢/d")p; ™ + (0/¢7) Apyl] + dAeri1 + Wit (53)

where d = b(u+ 6 — 0*¢/¢*), and

W1 = i1 + Vg1 — (L= b)vy — (bp/ " )vir1 + (1 = b) (o)™ )vf (54)

Because F;_1[wi+1] = 0, we can apply the two step procedure from the last section as long as the
instrumental variables are chosen from the information set available at ¢-1. In this case, the second
step is to apply an IV estimation method to Equation (53), where ¢ and ¢* are obtained in the
first step estimation. Because E;_j[w;y1] = 0 and w41 is in the information set available at ¢+1,
w¢+1 has a moving average (MA) representation of order one, and this serial correlation structure
needs to be taken into account (see, e.g., Ogaki 1993a for an explanation of methods which treat

this type of serial correlation in GMM).

5.2 Measurement Errors and the System Method

We use the measurement error model for the purpose of a sensitivity analysis with respect to PPP
as in the case for the single equation method. Again it is assumed that the model is true for the
true price levels, but that only measured prices that follow (49) and (50) are observed. Since p}*
and p;”"™" are observed instead of p; and p}, (49) and (50) are substituted into Equations (40)-(43)
in order to express these equations in terms of measured prices. It is also assumed that H; is the
information set generated by the current and past values of Ap;™ instead of Apj.

As for the adjustment to the PPP level, (40) is replaced by (53). For Aw;, we use

Awiyy = %Ap?il — hig 1 + RAGY, — %(APZ’Z — Ap;Th) (55)
so that
Aepiq =do + bh+1 (1- 5)E[§: & Awily ;| Hy) — @Apﬁl - %Ap:ﬁ +ugpir  (56)
=0
where
Wy = e — bhb—zlu _ 5)@%w - %uﬂHt] + ﬁmtﬂ - %Aygﬂﬂ (57)
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and E[ug?tH]Ht,l] =0.

Because the price level is assumed to be measured with errors as in (49),
my = 92 + (1/@1))]9;” — th + C2,t (58)

where 0 = 0, — 0/¢ and (o = Cp,p — vi/¢. Because (o, is stationary, a cointegrating regression
is applied to (58), assuming m; and i; are first difference stationary.
Thus we run two cointegrating regressions, (52) and (58), in the first step. In the second step,

GMM is applied to the system of four equations that consist of (53),

1 1 * * * *
Aeyi1 = —WApﬁl — FAptff + &  Ap ™ + aly ApyT 4+ agpApt’_”;H +ugq (59)
Apily = BrAp™ + BoAp ™ + o+ B Apy Uz i (60)
Awilty = 11 Apy ™ + 72 Ap " e Y1 AP o U (61)

where h is replaced by its estimate from (58) and ¢ and ¢* are replaced by their estimates from
(52). As before, because the first step estimators are super consistent, the first step estimation
does not affect asymptotic distributions of the second step GMM estimators under some regularity

conditions.

6 Empirical Results

In this section, we present empirical results for the system methods. Quarterly foreign exchange
rates and CPI from the International Financial Statistics (IFS) are used. The foreign exchange
rates are stated as the domestic price of one unit of foreign currency. In this paper, we use each
of the seven currencies alternatively as the base currency. The sample period is from 1974:Q1 to
2001:Q1.

For each country, we report results for two cases. The first case is when prices are measured
without error, which leads to the case of the known cointegrating vector. The second case is that of
the measurement error model of Section 5.1, in which the cointegrating vector for domestic prices,
exchange rates and foreign prices is not restricted to be (1,-1,-1). For the latter case, the two-step
method is used. In the first step, we use CCR to obtain long-run coefficients in PPP relations. In

the second step, we apply GMM to estimate the short-run coefficient.
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For the measurement error model, we need estimates of the coefficients in the cointegrating
relationship (52), which is based on PPP. Table 1 presents the results cointegrating regressions.
We report the third stage estimates of CCR for the coefficients and the fourth stage test results.

The deterministic cointegrating restrictions are rejected for 12 out of 42 cases at the five percent
significance level. The restriction is not rejected for all of Italian lire and Japanese yen based cases
at the five percent level. The null of stochastic cointegration is rejected for 14 out of 42 cases at
the 5 percent level of significant. For most of U.S. dollar, German mark and Japanese yen based
cases, the restrictions are not rejected at the five percent significance level for any H(1,q) test in
the table.

For the system method, our estimation procedure has two steps. First, we estimate the mon-
etary equilibrium equation to obtain interest elasticity of money demand. For the measurement
error model, we also obtain the measurement error coefficients, exploiting the long-run relationship
between domestic prices, foreign prices and exchange rates. In the second step, the speed of price
adjustment is estimated from the adjustment equation as well as the Hansen and Sargent equations.

To estimate the interest elasticity of money demand, we use the sum of M1 and Quasi Money
as the measure of the money stock, called M2, as the IFS suggests. The data for interest rates are
the three month T-bill rates, but three month deposit rates are employed for Japan because T-bill
rates are not available. We use nominal and real gross domestic product data in the IFS dataset
for all countries except the UK, for which we use the DRI data. All data series are seasonally
adjusted.

Table 2 shows the CCR results for the money demand equations. We assume that the income
elasticity of money demand is one. For each country, the first row reports the results when the
coefficient of the log price is restricted to be one, and the second row reports the results when the
coefficient is allowed to differ from one. When we employ the measurement error model, we use
the results reported in the second row.

The null of stochastic cointegration is rejected only for Germany, regardless of the assumption of
measurement errors at the 5 percent level. The deterministic cointegrating restriction is rejected for
Germany, Italy and Japan at the 5 percent level, when we allow for measurement errors. With the
prespecified cointegrating vector (1, -1, -1), France rejects the deterministic cointegrating restriction
at the 5 percent level, but do not reject it at 1 percent.

In all cases, the signs of the estimates for the interest elasticity of money demand are negative,
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as expected from the economic model. For Canada and France, the specification of measurement
errors does not affect the estimates for the interest elasticities. However, for Germany, Italy, Japan,
and the UK, the estimates from the measurement error models have smaller values than those from
the models without measurement error. Interestingly, these range from one fourth to one fifth of
the estimates from the no measurement error models for each country.

When we restrict the cointegrating vector to (1, -1, -1), the measurement error coefficients
are no longer free parameters. In this case, we have no problem when we separately run two
cointegrating regressions which include a common coefficient. But, if we allow for measurement
errors in price indices, then we have two estimates for the measurement error coefficient on the
domestic prices. One set of estimates is obtained from the PPP regression and the other set
from the money demand equation. There is no guarantee in practice for the two estimates to
be the same. If the estimates from the two equations are significantly different, it might imply
misspecification of the simple exchange rate model. Although this is the case, we use the estimates
from the PPP equation in Table 1 because we are more interested in PPP than in the money
demand equation. Park and Ogaki (1991) suggest the seemingly unrelated canonical cointegrating
regressions (SUCCR) method to deal with cross equation restrictions, when there are cointegrating
vectors in the equations. However, since the small sample properties of their estimator are not
better than CCR, we use the estimates from single equation CCR.

Table 3 reports the results of GMM estimation using the system method, equations (40)~(43) for
the case of no measurement error, and equations (53) and (59)~(61) for the measurement error case.
We also report the estimation results with additional sample period, namely 1974:Q1~1990:Q2, to
see whether or not German Economic and Monetary Union affects our results. The results are not
very different for the full sample and the subsample. The instrumental variables are Ap,”"3 and

Ap;"), which are foreign prices in all cases.!?

For each country, we report results for the known
cointegrating vector case and the unknown cointegrating vector case. In the system method, the
structural speed of adjustment coefficient b, appears in two equations: the gradual adjustment
equation, (18) or (40), or the Hansen-Sargent equation, (41). The model imposes the restriction
that the coefficient b in the gradual adjustment equation is the same as the coefficient b in the

Hansen-Sargent equation. We report results with and without this restriction imposed for the

system method of estimation. In the case of unrestricted estimation, by, is the estimate of b from

"2The selection of the instrumental variables is based on Akaike Information Criteria (AIC).
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the Hansen-Sargent equation, and by, is the estimate of b from the gradual adjustment equation.
The restricted estimate is denoted by b,. The likelihood ratio type test statistic (see, e.g., Ogaki
(1993a) for an explanation of this test), denoted by LR, is used to test the restriction. In all
cases, this restriction is not rejected at the five percent level. Furthermore, for the test of the
Hansent-Sargent restrictions in equation (38), we also report the likelihood ratio type test statistic,
denoted by LR1.13 For all cases the null hypothesis is not rejected at the ten percent level, which
is evidence in favor of the Hansen-Sargent restrictions.

To obtain half-life estimate, we use the restricted estimate of the structural speed of the adjust-
ment coefficient, b, in each case. The half-life estimate is based on the first order autoregressive
process of the domestic price implied by Equation (33). Because 1 - b is the AR coefficient for
the first order AR representation, and because our data are quarterly, the half-life is calculated as
0.25In(0.5)/In(1 — b). All restricted estimates for the structural speed of adjustment coefficient
have the theoretically correct positive sign. Most of them are significant at the five percent level.
The results in Table 3 show that the half-life estimates range from 0.07 to 1.88 years. These
half-life estimates are shorter than one year and much shorter than the consensus of 3-5 years when

half lives are estimated by single-equation methods (see, e.g., Rogoff (1996) ).

7 Concluding Remarks

This paper compares reduced form ECMs with structural form ECMs. The speed of adjustment
coefficients in reduced form ECMs are different from those in structural form ECMs in general, and
in our example of an exchange rate model with sticky prices. We discussed a single equation IV
method and a system IV method to estimate structural speed of adjustment coefficients. These IV
methods do not require exogeneity assumptions, and can be applied to a broad range of structural
ECMs.

When the system method is applied to the exchange rate model, the speed of adjustment
coeflicient is estimated from both the gradual adjustment equation for the domestic price and the
rational expectations equation for the exchange rate. The half-life estimates from the system
method seem to be shorter than two years and thus are shorter than the consensus of 3-5 years

when half lives are estimated by single-equation methods (see Rogoff (1996)). As explained by

'3 This test is done by conducting the likelihood ratio type test comparing the J with the Hansen-Sargent restriction
from the linear rational expectaions model and unrestricted one with free parameters.
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Rogoff (1996), price adjustment within 1 or 2 years is plausible, and the consensus of 3-5 years
is a puzzle. Given that Murray and Papell (1992) find that the single-equation methods do not
give much information about the half lives, the fact that the system method yields more plausible
estimates suggest that it extracts useful information about the half lives.

In this paper, we assumed the long-run PPP for CPI-based real exchange rate and uncovered
interest parity (UIP) for the short-term interest rate differentials in the exchange rate model.
Both of these conditions are often rejected by data. Therefore, this paper is just an initial step
toward utilizing information from an economic model to estimate the structural speed of adjustment
coefficient in an ECM. It is of interest to see how sensitive the results are when we relax these
assumptions. Kim (2003), and Kim and Ogaki (2002) have relaxed the long-run PPP assumption
by modifying the system method developed in this paper to a two-good model and applied it to
traded and non-traded good prices. They find plausible results that traded good prices adjust faster

14 In the future work, we also plan to relax the UIP assumption.

than non-traded good prices.
For example, in Lim and Ogaki’s (2003) model, the UIP essentially holds for the long-term interest
rate differential, but the forward premium anomaly exists for the short-term interest differential.
It may be possible to develop a system method based on the UIP for the long-term interest rate

differential.

"Kim (2003) follows Stockman and Tesar (1995) and uses the implicit deflators of non-service consumption and
service consumption classified by type and total consumption deflators to construct the real exchange rate for traded,
non-traded, and general prices, respectively. Kim finds that the estimated half-lives for the rates of the traded
goods range from 0.17 to 0.91 year. For general price rates, the estimated half-lives are around 1.30 to 1.88 years
and for non-traded goods’ rates, the adjustment speeds to PPP are much slower than those for traded goods’ prices
and general prices. Kim and Ogaki (2002) use PPI, CPI, and GDP deflators to construct the real exchange rates
for traded, non-traded, and general prices, respectively. They find that the estimated half-lives of the PPI-based
real exchange rates range from 0.19 to 0.41 year. For the GDP deflator-based real exchange rates, the estimated
half-lives range from 0.32 to 0.86 year and for the CPI-based real exchange rates the half-life estimates fall in the
0.88- to 1.57-year range. This result is consistent with Kim (2003).
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Table 1. Purchasing Power Parity

Currency(!) w(()Q) ) ¢/(b*(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA/US. 0019 0109  0.991 138.61 0.426 1.472
(0.244) (0.177)  (0.063)  (0.000) (0.513) (0.478)
FR/U.S.  0.006 0237  0.906 0.401 0.231 0.921
(0.312) (0.112) (0.069)  (0.526) (0.630) (0.631)
GE/US.  -0.053 0.195  0.957 5.237 2.436 4.357
(0.980) (0.429) (0.114)  (0.022) (0.118) (0.113)
IT/US.  -1.045 0185  0.910 0.488 0.327 0.472
(0.849) (0.154)  (0.138)  (0.484) (0.567) (0.789)
JP/US. 2469 0282  1.252 0.858 10.121 10.512
(1.212) (0.126)  (0.143)  (0.354) (0.001) (0.005)
UK.JUS. 0438 0067  0.899 3.054 6.566 7.201
(0.350) (0.161)  (0.071)  (0.080) (0.010) (0.027)
CA/UK. 0809 0004 0818 5.042 3.633 4.901
(0.412) (0.245) (0.083)  (0.024) (0.056) (0.086)
FR/UK. -0.649 0554  0.866 1.332 4.317 7.155
(0.624) (0.211)  (0.067)  (0.248) (0.037) (0.027)
GE/UK. 2244 -0441  0.678 0.013 7.887 9.462
(0.585) (0.152) (0.092)  (0.907) (0.005) (0.008)
IT/UK. -0573 0037  1.049 4.920 0.887 2.746
(0.880) (0.136)  (0.076)  (0.026) (0.346) (0.253)
JP/UK. 5333 -0394  0.298 0.379 20.848 22.331
(1.057) (0.101) (0.126)  (0.539) (0.000) (0.000)
US.JUK. 1257 -0290  0.749 10.663 2.448 2.479
(0.433) (0.193)  (0.088)  (0.001) (0.117) (0.289)
FR/CA 0131 0171 0911 2.821 0.152 0.205
(0.517) (0.175)  (0.094)  (0.093) (0.696) (0.902)
GE/CA  -0.741  0.139  0.869 0.780 7.734 9.850
(0.463) (0.140) (0.083)  (0.376) (0.005) (0.007)
IT/CA  -1.198  0.164  0.988 7.251 1.278 1.438
(0.862) (0.149)  (0.099)  (0.007) (0.258) (0.487)
JP/CA 0.021  0.046  0.957 0.187 13.589 17.066
(0.855) (0.086) (0.111)  (0.665) (0.000) (0.000)
UK./JCA 0689 0042  0.833 1.978 0.502 0.711
(0.454) (0.272) (0.094)  (0.159) (0.478) (0.700)
US./CA 0109 0081  0.978 1.463 5.180 5.553
(0.159) (0.123)  (0.041)  (0.226) (0.022) (0.062)
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Table 1. Purchasing Power Parity (continued)

Currency) ng) ¢(3) ¢/¢*(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA/FR 0259 0134  0.988 9.934 0.329 1.840
(0.271)  (0.102) (0.048)  (0.001) (0.565) (0.398)
GE/FR  -2.653 0474  1.662 41.441 2.391 12.334
(0.492) (0.189) (0.124)  (0.000) (0.122) (0.002)
IT/FR  -2.106 0410  0.945 0.925 4.462 4.884
(0.718) (0.181)  (0.109)  (0.336) (0.034) (0.086)
JP/FR 4285  -0.407  0.341 0.039 7.699 8.181
(0.864) (0.104) (0.125)  (0.842) (0.005) (0.016)
UK./JFR 0995 0676  1.115 1.939 5.518 9.257
(0.560) (0.198)  (0.066)  (0.163) (0.018) (0.009)
US./FR 0962  0.163  0.840 1.533 1.085 2.850
(0.368) (0.149)  (0.080)  (0.215) (0.297) (0.240)
CA/GE 1908 0511  0.685 6.923 0.931 1.800
(0.933) (0.222) (0.121)  (0.008) (0.334) (0.406)
FR/GE 0683  0.090  0.831 8.942 2.265 23.339
(0.358) (0.148)  (0.091)  (0.002) (0.132) (0.000)
IT/GE  -0.254 0.032  0.982 9.989 0.150 0.587
(0.640) (0.169) (0.206)  (0.001) (0.698) (0.745)
JP/GE 0274  0.007  0.940 0.002 8.396 8.432
(0.698) (0.096) (0.088)  (0.956) (0.003) (0.014)
UK./GE 1908 0337  0.691 22.012 0.042 0.058
(0.824) (0.203) (0.118)  (0.000) (0.835) (0.971)
US./GE 2382 0920  0.724 2.780 0.045 1.473
(0.618) (0.282) (0.073)  (0.095) (0.831) (0.478)
CA/IT  -0123 -0.236  0.664 0.078 10.101 10.501
(0.757)  (0.128)  (0.073)  (0.779) (0.001) (0.005)
FR/IT 2.285 0406  1.008 0.051 2.070 2.191
(0.928) (0.237) (0.129)  (0.821) (0.150) (0.334)
GE/IT 0412  -0.285  0.534 1.454 15.221 15.714
(0.407) (0.086) (0.085)  (0.227) (0.000) (0.000)
JP/IT 3217  -0.371  0.935 1.386 15.368 15.504
(0.380) (0.073) (0.115)  (0.238) (0.000) (0.000)
UK./IT 0316 0068  0.815 1.568 0.002 5.814
(0.896) (0.135)  (0.070)  (0.210) (0.963) (0.054)
US/IT 018 -0.220  0.604 0.172 5.958 6.337
(0.567) (0.097) (0.079)  (0.678) (0.014) (0.042)
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Table 1. Purchasing Power Parity (continued)

Currency() ng) P ¢/¢*(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA/JP 2.952 0.278 0.619 0.169 0.004 6.004
(0.669) (0.070)  (0.085)  (0.680) (0.947) (0.050)

FR/JP 2.837 0.268 0.542 0.118 0.901 7.924
(0.813) (0.102) (0.117)  (0.730) (0.342) (0.019)

GE/JP 2.082 0.249 0.732 3.126 0.665 0.711
(0.617)  (0.092) (0.072)  (0.077) (0.414) (0.700)

IT/JP 2.925 0.414 0.098 2.590 0.185 8.014
(0596  (0.100) (0.172)  (0.107) (0.666) (0.018)

U.K./JP 2.580 0.212 0.660 0.731 1.562 6.225
(1.242) (0.120) (0.146)  (0.392) (0.211) (0.044)

U.S./JP 3.972 0.369 0.538 0.389 0.254 1.553
(0.692) (0.080) (0.078)  (0.532) (0.614) (0.459)

Note: Results for pi" = ¢y + de; + (¢/0")p;™ + ¢,

Column (1): currencies

Column (2)~(4): Standard errors are in parentheses.

Column (5)~(7): P-values are in parentheses.
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Table 2. Money Demand Equation

Country® 02 1/6®  n®  go,1)® H(1,20 H(1,3)0

CA -0.046 1 30.031 1.019 0.445 1.098
(0.247) (9.875)  (0.313) (0.505) (0.578)

0.464  1.899  40.791 0.523 4.681 4.792
(0.456)  (0.240) (16.200)  (0.469) (0.030) (0.091)

FR -0.341 1 5.661 4.823 0.963 1.183
(0.071) (3.182)  (0.028) (0.326) (0.554)

0337 0253 5.560 2.036 0.097 0.321
(0.014) (0.038) (0.636)  (0.153) (0.755) (0.851)

GE 0.272 1 17.882 1.537 1.600 4575
(0.165) (9.856)  (0.215) (0.206) (0.102)

0454  1.597  3.003 11.500 18.610 18.650
(0.022) (0.050) (1.307)  (0.001) (0.000) (0.000)

IT -0.205 1 7.847 3.755 0.753 2.424
(0.172) (4.807)  (0.053) (0.386) (0.298)

-0.508  0.078  1.994 9.247 1.560 5.979

(0.041) (0.013)  (1.073)  (0.002) (0.212) (0.050)

P 11312 1 39.661 3.274 3.229 5.353
(0.059) (5.827)  (0.070) (0.072) (0.069)

13951 1.520  8.089 13.020 0.035 0.674

(0.784) (0.171)  (5.228)  (0.000) (0.852) (0.714)

UK. 10.662 1 111.312 1.853 0.088 0.597
(3.410) (128.3)  (0.173) (0.766) (0.742)

8.982 2265  27.560 2.942 0.129 5.562

(0.273)  (0.116)  (9.306)  (0.086) (0.720) (0.062)

U S. -5.151 1 12.779 0.001 1.678 17.232
(0.156) (6.875)  (0.965) (0.195) (0.000)

4951 0.960  14.208 1.631 2.735 24.362

(0.781) (0.168) (7.507)  (0.201) (0.098) (0.000)

Note: Results for my = 02 + (1/¢)pi" — hi¢ + (a4
Column (1): domestic countries
Column (2)~(4): Standard errors are in parentheses.

Column (5)~(7): P-values are in parentheses.
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Table 3. The system Method Results for CPI-based Real Exchange Rates

Country(l) ¢(2) ¢/¢*(3) Half-Life(%) b,@ Jﬁﬁ) bg;m bq(fz]a JS)) LR19  [Rr1(1Y)

CA/U.S. 1 1 0.19 0.593 4.511 781.45 0.144 4.286 0.225 0.952
(0.039)  (0166) (0.341) (17566) (0.646) (0.232) (0.635  (0.621)

0.109 0.991 0.17 0.634 8.272 2344.2 0.318 7.716 0.556 3.601

(0.027)  (0.164) (0.082) (52805) (2.678) (0.052) (0.455) (0.165)

FR/U.S. 1 1 1.51 0.108 2.594 0.204 0.099 1.692 0.902 1.834
(1.276)  (0.011) (0.627) (0.099) (0.135) (0.638) (0.342)  (0.399)

0.237 0.906 0.90 0.174 2.490 0.324 1.868 2.046 0.444 0.688

(0.322)  (0.013) (0.646) (0.134) (0.500) (0.562) (0.505)  (0.709)

GE/U.S. 1 1 0.35 0.387 6.806 0.345 0.023 3.322 3.484 1.735
(0.094)  (0.064) (0.146) (0.002) (0.007) (0.344) (0.062)  (0.420)

73:1~90:11 0.29 0.449 4.623 2677.8 -0.456 4.395 0.228 2.728
(0.134)  (0.164) (0.328) (30464) (0.736) (0.221) (0.633) (0.255)

0.195 0.957 0.19 0.605 1.798 0.074 0.781 1.117 0.681 0.207

(0.067)  (0.312) (0.772) (0.065) (0.341) (0.772) (0.409) (0.901)

73:1~90:11 0.18 0.619 4.926 3874.9 0.556 4.517 0.409 3.538
(0.055)  (0.288) (0.294) (77527) (0.374) (0.210) (0.522)  (0.170)

IT/U.S. 1 1 0.26 0.489 2.618 2698.8 0.754 2.054 0.564 1.554
(0.154)  (0.270) (0.623) (27157) (1.250) (0.561) (0.452)  (0.459)

0.185 0.901 0.10 0.816 1.598 0.971 0.361 1.385 0.213 0.237

(0.014)  (0.402) (0.808) (2.270) (0.239) (0.708) (0.644)  (0.888)

JP/U.S. 1 1 0.43 0.330 4.556 601.31 7.688 1.876 2.680 2.222
(0.264)  (0.098) (0.335) (61672) (4.289) (0.598) (0.101)  (0.329)

0.282 1.252 0.23 0.524 2.828 0.130 0.803 1.789 1.039 0.491

(0.093)  (0.221) (0.586) (0.021) (0.663) (0.617) (0.308) (0.782)

U.K./U.S. 1 1 0.17 0.628 2.750 0.063 3.803 2.548 0.202 2.548
(0.026)  (0.146) (0.600) (0.021) (2.874) (0.466) (0.653) (0.279)

0.067 0.899 0.72 0.213 5.621 938.78 12.350 5.479 0.142 4.273

(1475)  (0.117) (0.220) (21638) (4.049) (0.139) (0.706) (0.118)

CA/UK. 1 1 0.47 0.308 1.685 0.024 0.816 0.206 1.479 0.413
(0.013)  (0.004) (0.793) (0.000) (0.891) (0.976) (0.223) (0.813)

0.004 0.818 0.25 0.497 4.144 0.042 2.499 1.435 2.709 2.817

(0.263)  (0.493) (0.386) (0.020) (0.564) (0.697) (0.099)  (0.244)

GE/U.K. 1 1 0.12 0.761 3.953 0.507 3.064 3.623 0.330 0.663
(0.009)  (0.153) (0.412) (0.265) (1.019) (0.305) (0.565) (0.717)

73:1~90:11 0.07 0.905 6.131 0.284 1.065 5.970 0.161 0.382
(0.002)  (0.183) (0.189) (0.140) (0.201) (0.113) (0.688)  (0.826)

-0.441 0.678 0.37 0.371 2.937 0.332 0.014 0.649 2.288 2.669

(0.740)  (0.426) (0.568) (0.001) (0.028) (0.884) (0.130) (0.263)

73:1~90:11 0.33 0.404 3.818 6669.8 3.396 2.946 0.872 0.115
(0177)  (0.142) (0.431) (91526) (0.828) (0.399) (0.350)  (0.944)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(l) ¢(2) qﬁ/qﬁ*(g) Half-Life(4) b7(»5) JT@ bg;w bq(fzya qug) LRI LR1(1D)

FR/U.K. 1 1 0.15 0.677 2.701 0.215 2.011 1.851 0.850 1.038
(0.035)  (0.295) (0.609) (0.121)  (0.596) (0.603) (0.356)  (0.595)

0.554 0.866 0.12 0.768 1.640 889.60 0.776 1.578 0.062 1.378

(0.021)  (0.390) (0.801) (42899) (0.379) (0.664) (0.803)  (0.502)

IT/UK. 1 1 0.22 0.545 6.808 0.330 1.369 6.611 0.197 4.450
(0.027)  (0.078) (0.146) (0.363) (0.078) (0.085) (0.657) (0.108)

0.037 1.049 0.14 0.718 1.179 0.507 0.075 1.085 0.091 0.055

(0.039)  (0.457) (0.881) (0.023) (0.110) (0.780) (0.762) (0.972)

JP/UK. 1 1 0.13 0.745 2.519 3281.6 0.997 2.060 0.459 0.137
(0.025)  (0.380) (0.641) (63132) (0.806) (0.559) (0.498) (0.933)

-0.394 0.298 0.09 0.842 4.878 0.066 0.677 3.933 0.945 1.882

(0.005)  (0.187) (0.300) (0.087) (0.213) (0.268) (0.331)  (0.390)

U.S./UK. 1 1 0.59 0.253 4.223 1718.8 4.682 1.519 2.704 3.055
(0.244)  (0.035) (0.376) (15995) (2.931) (0.677) (0.100) (0.217)

-0.290 0.749 0.08 0.873 3.112 0.283 0.963 3.085 0.027 0.331

(0.003)  (0.162) (0.539) (1.025) (0.163) (0.378) (0.869) (0.847)

FR/CA 1 1 2.22 0.075 4.344 0.144 2.382 2.665 1.679 0.911
(43.511)  (0.119) (0.361) (0.058) (0.751) (0.446) (0.195)  (0.634)

0.171 0.911 0.14 0.703 5.483 0.362 -1.466 4.521 0.962 2.058

(0.033)  (0.348) (0.241) (0.643) (0.375) (0.210) (0.326) (0.357)

GE/CA 1 1 0.66 0.230 1.957 0.327 2.091 1.788 0.169 0.271
(0.397)  (0.041) (0.743) (0.116) (0.263) (0.617) (0.681) (0.873)

73:1~90:11 0.27 0.471 5.384 0.369 0.608 4.992 0.392 0.859
(0.118)  (0.176) (0.250) (0.762)  (0.296) (0.172) (0.531)  (0.650)

0.139 0.869 0.17 0.629 4.701 8748.3 0.045 4.477 0.224 1.312

(0.046)  (0.264) (0.319) (90024) (0.180) (0.214) (0.636) (0.519)

73:1~90:11 0.18 0.615 4.955 7113.2 0.502 4.667 0.288 0.634
(0.067)  (0.340) (0.291) (2292.8) (0.361) (0.197) (0.591)  (0.728)

IT/CA 1 1 0.89 0.177 4.932 3062.5 -0.398 4.344 0.588 1.884
(11.017)  (0.470) (0.204) (44341) (0.664) (0.226) (0.443)  (0.389)

0.046 0.957 1.15 0.140 2.370 0.281 4.023 2.335 0.035 3.126

(1.464)  (0.029) (0.667) (0.068) (2.778) (0.505) (0.851)  (0.209)

JP/CA 1 1 0.30 0.437 5.401 2207.1 0.233 1.914 3.487 0.591
(0.552)  (0.605) (0.248) (33989) (3.500) (0.590) (0.061)  (0.744)

0.046 0.957 1.15 0.140 2.370 0.281 4.023 2.335 0.035 0.086

(1.464)  (0.029) (0.667) (0.068) (2.778) (0.505) (0.851) (0.958)

U.K./CA 1 1 0.13 0.733 3.123 0.022 0.718 3.109 0.014 1.393
(0.013)  (0.180) (0.537) (0.016) (0.639) (0.375) (0.905) (0.498)

0.042 0.833 0.42 0.341 3.396 -0.076 1.044 1.724 1.672 1.545

(0.403)  (0.169) (0.493) (0.070) (0.112) (0.631) (0.195) (0.461)

32



Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(l) ¢(2) qﬁ/qﬁ*(g) Half-Life(4) b7(»5) JT@ bg;w bq(fzya qug) LRI LR1(1D)

U.S./CA 1 1 0.36 0.386 3.854 -0.047 0.814 1.729 2.125 0.477
(0.189)  (0.127) (0.425) (0.039) (0.201) (0.630) (0.144) (0.787)

0.081 0.978 0.08 0.878 4.992 0.044 0.857 1.960 3.032 1.618

(0.003)  (0.202) (0.288) (0.043) (0.182) (0.580) (0.081)  (0.445)

CA/FR 1 1 0.59 0.256 5.749 0.042 0.949 5.430 0.319 0.490
(0.268)  (0.040) (0.218) (0.004) (0.131) (0.142) (0.572) (0.782)

0.134 0.988 0.27 0.468 6.471 913.77 0.699 5.308 1.163 1.201

(0.150)  (0.218) (0.166) (65601) (1.003) (0.105) (0.280) (0.548)

GE/FR 1 1 1.07 0.149 1.871 0.300 0.288 1.868 0.003 0.202
(1.031)  (0.025) (0.759) (0.102) (0.334) (0.600) (0.956) (0.903)

73:1~90:11 0.88 0.178 2.958 0.368 0.841 0.580 2.378 1.086
(1.196)  (0.052) (0.564) (0.025) (0.232) (0.901) (0.123) (0.581)

0.474 1.662 0.26 0.482 3.600 0.001 0.693 2.823 0.777 1.096

(0.134)  (0.221) (0.462) (0.000) (0.191) (0.419) (0.378) (0.578)

73:1~90:11 0.30 0.441 7.357 0.175 1.414 6.622 0.735 1.111
(0.133)  (0.151) (0.118) (2.587) (0.264) (0.084) (0.391) (0.573)

IT/FR 1 1 0.21 0.564 2.059 0.526 0.371 1.997 0.062 0.748
(0.107)  (0.356) (0.724) (0.076) (1.129) (0.572) (0.803)  (0.000)

0.410 0.945 0.44 0.325 2.508 1519.6 -0.285 1.641 0.867 0.774

(0.209)  (0.105) (0.643) (19070) (1.406) (0.650) (0.351) (0.688)

JP/FR 1 1 1.04 0.154 3.459 2896.1 2.005 2.570 0.889 0.357
(14.856)  (0.401) (0.483) (60717) (1.110) (0.462) (0.345) (0.836)

-0.407 0.341 0.15 0.677 5.023 0.247 1.129 2.799 2.224 1.469

(0.046)  (0.384) (0.284) (0.164) (0.204) (0.423) (0.135) (0.479)

U.K./FR 1 1 0.51 0.288 2.210 0.307 0.500 1.451 0.759 0.071
(0.168)  (0.038) (0.697) (6.941) (0.538) (0.693) (0.383) (0.965)

0.676 1.115 0.43 0.331 5.589 896.65 2.094 4.347 1.242 0.235

(0.376)  (0.141) (0.231) (72470) (1.009) (0.226) (0.265) (0.889)

U.S./FR 1 1 0.48 0.301 5.957 4817.9 1.311 4.627 1.330 0.586
(0.430)  (0.114) (0.202) (99270) (0.190) (0.201) (0.248)  (0.746)

0.163 0.840 0.28 0.457 2.797 0.036 0.787 2.620 0.177 0.249

(0.153)  (0.202) (0.592) (0.037) (0.211) (0.453) (0.673) (0.882)

CA/IT 1 1 0.13 0.739 2.877 0.209 0.988 1.433 1.444 0.163
(0.017)  (0.246) (0.578) (38.050) (0.209) (0.697) (0.229) (0.921)

-0.236 0.664 1.63 0.101 1.621 9.656 1.527 1.429 0.192 0.606

(7.609)  (0.053) (0.804) (28.380) (0.599) (0.698) (0.661) (0.738)

FR/IT 1 1 0.20 0.577 3.204 1556.1 0.924 1.101 1.923 2.428
(0.053)  (0.198) (0.053) (77039) (0.645) (0.776) (0.165) (0.297)

0.406 1.008 0.12 0.777 6.831 0.413 0.999 5.035 1.796 2.144

(0.101)  (0.203) (0.145) (0.135) (0.265) (0.169) (0.180) (0.342)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(l) ¢(2) qﬁ/qﬁ*(g) Half-Life(4) b$5) JT@ bg;w bq(fzya qug) LRI LR1(1D)

JP/IT 1 1 1.10 0.146 0.244 1047.5 0.263 0.208 0.036 2.053
(10.182)  (0.231) (0.993) (40154) (0.634) (0.976) (0.849)  (0.358)

-0.371 0.935 1.88 0.088 0.864 0.123 -0.062 0.457 0.407 0.659

(95.997)  (0.433) (0.920)  (0.01)  (0.282) (0.928) (0.523) (0.719)

U.K./IT 1 1 0.14 0.708 3.283 1029.7 0.887 2.241 1.042 1.050
(0.016)  (0.175) (0.511) (67449) (0.261) (0.523) (0.307) (0.591)

0.068 0.815 0.09 0.849 3.004 269.83 0.859 2.850 0.154 0.890

(0.005)  (0.224) (0.557) (66145) (0.225) (0.415) (0.694) (0.640)

U.S./IT 1 1 0.24 0.512 1.307 0.098 0.905 0.805 0.502 0.088
(0.368)  (0.785) (0.904) (0.089) (0.626) (0.848) (0.478)  (0.956)

-0.220 0.604 0.44 0.325 4.699 0.073 0.575 3.854 0.845 0.435

(0.376)  (0.132) (0.319) (0.067) (0.396) (0.277) (0.357) (0.804)

GE/IT 1 1 0.16 0.669 3.762 0.031 0.883 1.801 1.961 1.788
(0.027)  (0.215) (0.439) (0.109) (0.457) (0.614) (0.161)  (0.409)

73:1~90:11 0.13 0.727 4.762 0.603 1.352 2.435 2.327 0.505
(0.011)  (0.147) (0.312) (0.173)  (0.672) (0.487) (0.127) (0.776)

-0.285 0.534 0.25 0.503 2.727 0.112 -1.617 2.711 0.016 0.467

(0.120)  (0.238) (0.604) (0.047) (5.152) (0.438) (0.899) (0.791)

73:1~90:11 0.24 0.513 2.287 0.176 1.647 0.572 1.715 0.526
(0.133)  (0.288) (0.683) (0.164) (1.341) (0.902) (0.190) (0.768)

CA/JP 1 1 0.36 0.381 6.555 904.17 1.151 4.009 2.546 1.201
(0.252)  (0.161) (0.161) (52946) (0.387) (0.260) (0.110)  (0.548)

0.278 0.619 1.86 0.089 5.005 0.024 0.234 3.093 1.912 1.489

(6.849)  (0.032) (0.286) (0.003) (0.058) (0.377) (0.166) (0.475)

FR/JP 1 1 0.69 0.221 4.447 -0.125 0.655 2.408 2.039 1.517
(1.223)  (0.110) (0.348) (20.860) (0.781) (2.492) (0.153) (0.468)

0.268 0.542 0.37 0.372 1.395 0.016 1.042 1.633 0.762 0.317

(0.261)  (0.152) (0.844) (0.052) (0.065) (0.888) (0.382) (0.853)

GE/JP 1 1 0.51 0.286 3.032 5.617 1.672 2.127 0.905 0.899
(1.790)  (0.395) (0.552) (6.422) (0.502) (0.546) (0.341) (0.638)

73:1~90:11 0.49 0.297 0.881 0.324 0.479 0.357 0.524 0.354
(0.483)  (0.122) (0.927) (0.011) (0.870) (0.948) (0.469) (0.837)

0.249 0.732 0.92 0.172 0.842 0.024 0.576 0.391 0.451 0.580

(2.216)  (0.086) (0.932) (0.074) (0.732) (0.942) (0.501) (0.748)

73:1~90:11 0.86 0.182 0.389 -0.005 0.050 0.347 0.042 0.015
(1.880)  (0.088) (0.983) (1.266) (0.880) (0.951) (0.837) (0.992)

IT/JP 1 1 1.42 0.115 0.868 0.501 0.709 0.103 0.765 0.029
(10.264)  (0.108) (0.928) (0.001) (0.235) (0.991) (0.381)  (0.985)

0.414 0.098 0.36 0.385 6.049 2839.2 2.961 4.050 1.999 2.050

(0.092)  (0.061) (0.195) (83321) (0.963) (0.256) (0.157) (0.358)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(l) q§(2) ¢/¢*(3) Half-Life(%) bS)) JT@ bg;w bq(fzya J’[S,g) LR pRr1(1Y)

UK./JP 1 1 0.66 0232 2205 0042 0874  0.731 1474  0.121
(0.207)  (0.022) (0.697) (0.012) (0.273) (0.865) (0.224)  (0.941)

0212  0.660 0.17 0.646 5547  926.78  0.939 3914 1633  1.826
(0.031)  (0.202) (0.235) (80478) (0.411) (0.270) (0.201)  (0.401)

US./JP 1 1 0.32 0414 3412  -0.066 -5.061  1.006 2415  0.683
(0.489)  (0.431) (0.489) (0.021)  (9.738) (0.799) (0.120) (0.710)

0.369  0.538 0.11 0.802  2.684  1422.8 2671 2589  0.095  0.353
(0.012)  (0.297) (0.611) (11120) (1.052) (0.459) (0.757) (0.838)

CA/GE 1 1 0.12 0754 5797 0128 1456 4911  0.886  1.220
(0.020)  (0.326) (0.214) (0.075)  (0.213)  (0.178) (0.346)  (0.543)

73:1~90:11 0.10 0821 4545 41148  3.068  1.936  2.609  0.465
(0.004)  (0.133) (0.337) (11620) (7.583) (0.585) (0.106) (0.792)

0511  0.685 0.23 0530 5281 0397  1.639 5204  0.077  0.749
(0.037)  (0.092) (0.259) (1.510) (0.169) (0.157) (0.781) (0.687)

73:1~90:11 0.23 0523  6.680 0112 1425 5725 0955 2571
(0.059)  (0.140) (0.153) (0.061)  (0.246) (0.125) (0.328) (0.276)

FR/GE 1 1 0.35 0393  7.691 0016 1549 6246 1445  3.470
(0.203)  (0.146) (0.103) (0.360)  (0.461)  (0.100) (0.229)  (0.176)

73:1~90:11 0.22 0545  0.865  0.179  0.005 0448  0.417  0.020
(0.057)  (0.161) (0.929) (0.004)  (0.071) (0.930) (0.518)  (0.990)

0.090  0.831 0.50 0295  7.054 0111 0875 6258 0.796  0.838
(0.503)  (0.124) (0.133) (0.067) (1.289)  (0.099) (0.372)  (0.657)

73:1~90:11 0.37 0371  7.616  0.033 148 6206 1410  1.314
(0.168)  (0.097) (0.106) (3.177)  (1.524) (0.102) (0.235) (0.518)

IT/GE 1 1 0.33 0410  0.649 -0.576  -1.872 0272  0.377  0.049
(0.265)  (0.225) (0.957) (0.196)  (5.321) (0.965) (0.539)  (0.975)

73:1~90:11 0.12 0.776  1.089  0.605  0.151 0597 0492  0.504
(0.014)  (0.281) (0.895) (0.154)  (0.054) (0.288) (0.483) (0.777)

0.032  0.982 0.47 0.309 2201 0525  -0.027 1953  0.248  1.256
(0.264)  (0.077) (0.698) (0.012) (0.030) (0.582) (0.618) (0.533)

73:1~90:11 0.49 0296 2261  0.026 6196 1959  0.302  1.520
(0.288)  (0.072) (0.687) (0.378) (11.340) (0.581) (0.582) (0.467)

JP/GE 1 1 0.42 0337 1551  -0.091 -333.34 0590 0961  0.282
(0.084)  (0.034) (0.817) (0.171) (113.6) (0.898) (0.326) (0.868)

73:1~90:11 0.39 0357 4930 0169 0433 2516 2414  0.884
(0.247)  (0.123) (0.294) (0.048)  (0.112) (0.472) (0.120) (0.642)

0.007  0.940 1.46 0.112 4775 0104  1.860 2550 2225  1.307
(3.515)  (0.034) (0.311) (0.059) (0.551) (0.466) (0.135) (0.520)

73:1~90:11 0.86 0.182 2951 0131 0225  0.653 2298  1.885

(0.662)  (0.031) (0.566) (0.010) (0.114) (0.253) (0.129)  (0.389)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(l) (]5(2) ¢/¢*(3) Half-Life(%) bS)) JT@ bg;w 5738;@ Jqsg) LR(10  LR1(D
U.K./GE 1 1 0.14 0.721 1.826 0.036 0.077 1.372 0.454 0.757
(0.014)  (0.172) (0.767) (0.000) (0.302) (0.711) (0.500)  (0.684)

73:1~90:11 0.11 0.798 6.576 1322.1 2.397 3.791 2.785 0.456
(0.010)  (0.250) (0.160) (65054) (2.019) (0.284) (0.095)  (0.796)

0.337 0.691 0.18 0.628 3.172 -0.046 1.303 2.604 0.568 0.059

(0.026)  (0.146) (0.529) (0.013) (0.766) (0.456) (0.451)  (0.971)

73:1~90:11 0.18 0.629 3.104 0.036 0.196 1.894 1.210 1.108
(0.047)  (0.267) (0.540) (0.001) (0.161) (0.594) (0.271) (0.574)

U.S./GE 1 1 0.34 0.398 3.393 1549.7 1.079 3.065 0.328 0.108
(0.027)  (0.021) (0.494) (41562) (0.297) (0.381) (0.566) (0.947)

73:1~90:11 0.35 0.389 5.832 0.063 0.772 2.960 2.872 2.531
(1.059)  (0.731) (0.211) (0.031) (0.561) (0.397) (0.090) (0.282)

0.920 0.724 0.94 0.169 0.427 1117.9 0.125 0.263 0.164 0.073

(0.874)  (0.032) (0.980) (42207) (0.401) (0.966) (0.685)  (0.964)

73:1~90:11 0.16 0.653 5.201 917.37 0.827 5.051 0.150 0.734
(0.033)  (0.229) (0.267) (43147) (0.051) (0.168) (0.698)  (0.692)

Note; For the unresticted estimation, by, ;s is the estimate for the speed of adjustment coefficient obtained

from Hansen and Sargent equations, and by g4 is the estimate for the coefficient obtained from the price

adjustment equation. LRI is the results of likelihood ratio type tests for the hansen-sargent restriction.

Column (1): currencies
Column (2) and (3) are from Table 1.
Column
6), (9) , (10) & (11): P-values are in parentheses.

4

):
)
4), (5), (7) & (8): Standard errors are in parentheses.
)
Column (4):

(
(
Column (
(

Half-life in years.
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