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Abstract

Error correction models are widely used to estimate dynamic cointegrated systems. In most
applications, estimated error correction models are reduced form models. As a result, nonstruc-
tural speed of adjustment coefficients are estimated in these applications. A single equation
instrumental variable method can be used to estimate a structural speed of adjustment coeffi-
cient. This paper develops a system instrumental variable method to estimate the structural
speed of adjustment coefficient in an error correction model. This method utilizes Hansen and
Sargent’s (1982) instrumental variable estimator for linear rational expectations models, and is
applied to an exchange rate model with sticky prices.
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1 Introduction

Davidson, Hendry, Srba, and Yeo’s (1978) Error Correction Model (ECM) is widely used to estimate

dynamic cointegrated systems.1 As the Granger Representation Theorem shows (see Engle and

Granger (1988)), an ECM representation exists when the variables are cointegrated and vice versa.2

The standard ECMs are reduced form models just as VAR models are as pointed out by Urbain

(1992) and Boswijk (1994,1995). As in VAR models, identification of structural shocks is an

important issue for structural ECMs. King, Plosser, Stock, and Watson (1991), Jang (2000), and

Jang and Ogaki (2003) develop methods to identify structural shocks with short-run and long-run

restrictions.3

Another important issue for the structural ECM is estimation of the speed of adjustment toward

the long-run equilibrium level. This paper focuses on this issue. In a structural ECM, at least one

linear combination of variables gradually adjusts to the long-run equilibrium level with a constant

speed of adjustment. In general, the speed of adjustment coefficient in a structural ECM is different

from the speed of adjustment coefficient in its reduced form ECM. As an example, we will show

that they are different in an exchange rate model with sticky prices. In the exchange rate model,

the structural speed of adjustment coefficient is not a deep structural parameter, but it is equal

to one minus the first order autoregressive coefficient for the log real exchange rate.4 Hence the

structural speed of adjustment coefficient can be used to compute the half-life of the real exchange

rate, and is a parameter of interest. However, the reduced form speed of adjustment is a nonlinear

function of the structural speed of adjustment and the interest elasticity of money demand. Hence

the reduced form speed of adjustment coefficient in the ECM cannot be directly compared with

the half-life estimates of real exchange rates in the literature (see, e.g., Rogoff (1996) for a survey,

and Kilian and Zha (2002) and Murray and Papell (2002) for more recent works).

Standard estimation methods for ECMs such as Engle and Granger’s two step method and

Johansen’s (1988) Maximum Likelihood method estimate the reduced form speed of adjustment

1An alternative method is levels VAR without imposing unit roots. Estimators which are based on a levels VAR
are more robust but are usually less efficient than those based on an ECM if the restrictions regarding nonstationarity
and cointegration imposed by the ECM are true.

2The theorem should be used with caution because there exist economic models in which the regularity conditions
of the theorem do not apply as shown in Ogaki (1998). However, the model in this paper is subject to this criticism.

3The word Vector ECM (VECM) is usually used when identification for structural shocks is studied.
4As explained later, the coefficient cannot be estimated by Ordinary Least Squares with measurement errors.

However, the structural coefficient is equal to one minus the first order autoregressive coefficient of the true value of
the log real exchange rate even with measurement errors.
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coefficient rather than the structural speed of adjustment coefficient. A single equation instru-

mental variable (IV) method can be directly applied to a gradual adjustment equation. The main

purpose of this paper is to develop a system method that combines the single equation method

with Hansen and Sargent’s (1982) IV method for linear rational expectations models.

In the single equation method, an IV method is applied to a gradual adjustment equation

that describes how a variable slowly adjusts to the long-run equilibrium level in the structural

ECM. The system method combines the single equation method with Hansen and Sargent’s (1982)

method which applies Hansen’s (1982) Generalized Method of Moments (GMM) to linear rational

expectations models. The system method is more efficient than the single-equation method when

the restrictions implied by linear rational expectations models are true. On the other hand, the

single equation method is robust to misspecification in the other equations of the structural ECM.

Therefore, we can form a test statistic of the restrictions by comparing the results from the two

methods.

These methods are applied to an exchange rate model with sticky prices. The model is a one-

good version of Mussa’s (1982) model, which may be viewed as a stochastic discrete time version

of Dornbush’s (1976) model. This model includes a gradual adjustment equation, in which the

domestic price adjusts to the long run equilibrium level determined by Purchasing Power Parity

(PPP) with rational expectations. We refer the speed of adjustment coefficient for this equation as

the structural speed of adjustment coefficient. Because the basic idea of the ECM is that variables

adjust to their long run levels, it is of interest to examine whether or not the standard estimation

methods of the ECM can be used to estimate the structural speed of adjustment coefficient. We

will show that, in the exchange rate model, the standard ECM estimation methods do not recover

the structural speed of adjustment coefficient.

Data are for the exchange rates of currencies of Canada, France, Germany, Italy, Japan, the

United Kingdom, and the United States. Using the single equation method, we obtain positive

estimates for the structural speed of adjustment coefficient in most cases.

We then apply the system method to the same data set. In this case the speed of adjustment

coefficient can be estimated from the gradual adjustment equation for the domestic price and the

rational expectations equation for the exchange rate. We form a specification test by comparing

the estimates for the speed of adjustment coefficient from these two equations.

Structural ECMs have been considered by several authors. Urbain (1992) investigates sufficient
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conditions for weak exogeneity for structural ECMs that are similar to ours. Boswijk (1994,1995)

and Hsiao (1997) discuss the relationship between the ECM and structural simultaneous equations

models. However, unlike Urbain and Hsiao, we do not assume that exogenous variables are observed

by the econometrician. In our empirical application, it is not natural to assume exogeneity of

any variable in the cointegrated system. Papell (1995) derives a reduced form ECM from an

exchange rate model that is similar to ours. However, the real exchange rate is nonstationary

in his model unlike ours. He applies Phillips’ (1991) ML estimator to the reduced form ECM.

Dolado, Galbraith and Banerjee (1991) and Gregory, Pagan, and Smith (1993) derive structural

ECMs from linear quadratic models. They discuss the difficulties associated with the application of

standard estimation methods such as Engle and Granger’s (1987) two-step method and Johansen’s

(1988, 1991) Maximum Likelihood (ML) method to the ECM. They do not combine their method

with Hansen and Sargent’s (1982) IV method for linear rational expectations models.

The rest of this paper is organized as follows. In Section 2, a structural ECM is presented and

its relationship to a reduced form ECM is discussed. Section 3 discusses the single equation and

system methods for the structural ECM. Section 4 presents an exchange rate model in which the

domestic price slowly adjusts toward the Purchasing Power Parity (PPP) level. In Section 5, the

model of Section 4 is augmented to include measurement errors. Section 6 presents our empirical

results for the system methods. Section 7 contains concluding remarks.

2 Structural Models and Error Correction Models

In this section, we discuss the relationship between structural models and ECMs. Let yt be an

n-dimensional vector of first difference stationary random variables. We assume that there exist ρ

linearly independent cointegrating vectors, so that A0yt is stationary, where A0 is a (ρ× n) matrix
of real numbers whose rows are linearly independent cointegrating vectors. Consider a standard

ECM

∆yt+1 = k+GA
0yt +F1∆yt +F2∆yt−1 + ...+ Fpyt−p+1 + vt+1 (1)

where k (n × 1) vector, G is a (n × ρ) matrix of real numbers, vt is a stationary n-dimensional

vector of random variables with bE[νt+1|Ht−τ ] = 0. In many applications τ = 0, but we will give

examples of applications in which τ > 0.5 There exist many ways to estimate (1). For example,

5We will treat more general cases in which the expectation of νt+1 conditional on the economic agents’ information
is not zero, but the linear projection of νt+1 onto an econometrician’s information set (which is smaller than the
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Engle and Granger’s two step method or Johansen’s Maximum Likelihood methods can be used.

Many applications of standard ECMs give elements in G structural interpretations as param-

eters of the speed of adjustment toward the long-run equilibrium represented by A0yt. It is of

interest to study conditions under which the elements in G can be given such a structural interpre-

tation. In the model of Section 4, the domestic price level gradually adjusts to its PPP level with

a speed of adjustment parameter b. We will investigate conditions under which b can be estimated

as an element in G from (1).

In most applications, (1) is a reduced form model. A class of structural models can be written

in the following form of a structural ECM:

C0∆yt+1 = d+BA
0yt +C1∆yt +C2∆yt−1 + ...+ Cpyt−p+1 + ut+1 (2)

where Ci is a (n × n) matrix, d is an (n × 1) vector, and B is an (n × ρ) matrix of real numbers.6

Here C0 is a nonsingular matrix of real numbers with ones along its principal diagonal, ut is a

stationary n-dimensional vector of random variables with bE[ut+1|Ht−τ ] = 0. Even though cointe-

grating vectors are not unique, we assume that there is a normalization that uniquely determines

A so that parameters in B have structural meanings. For the rest of this paper, we assume that

the gradual adjustment toward the long-run equilibrium in the first equation in Equation (2) is of

particular interest to the researcher. Therefore, the first row of B gives the structural parameters

of interest.

In order to see the relationship between the standard ECM and the structural ECM, we premul-

tiply both sides of (2) by C−10 to obtain the standard ECM (1), where k = C−10 d, G = C−10 B, Fi

= C−10 Ci, and νt = C−10 ut. Thus the standard ECM estimated by Engle and Granger’s two step

method or Johansen’s Maximum Likelihood methods is a reduced form model. Hence it cannot

be used to recover structural parameters in B, nor can the impulse-response functions based on νt

be interpreted in a structural way unless some restrictions are imposed on C0.

As in a VAR, various restrictions are possible for C0. One example is to assume that C0 is

lower triangular. If C0 is lower triangular, then the first row ofG is equal to the first row of B, and

structural parameters in the first row of B are estimated by the standard methods used to estimate

an ECM. In the exchange rate model in this paper, the restriction that C0 is lower triangular is not

economic agents’ information set) is zero.
6 If the deterministic cointegration restriction (see Ogaki and Park, 1998, for this terminology) is not satisfied,

then a linear trend term needs to be added to Equation (2).
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attractive. However, as we discuss in Section 4.3, the structural ECM from the one-good version of

the exchange rate model does not satisfy the restriction that C0 is lower triangular for any ordering

of the variables. Even though some structural models may be written in lower triangular form,

our example suggests that many structural models cannot be written in that particular form.

3 The Instrumental Variables Methods

Because standard methods of estimating reduced form ECMs may not recover the structural pa-

rameters of interest in B, we consider two instrumental variables methods. The single equation

method simply applies an IV estimator to a gradual adjustment equation. The system method

combines the single equation method with Hansen-Sargent IV estimator. These methods do not

require restrictions on C0.

3.1 The Single Equation Method

First, we consider a single equation method, which applies an IV method to a gradual adjustment

equation. Imagine that we are interested in estimating the first row of Equation (2). In some

applications, the cointegrating vectors are known, and thus the values of A are known. It should

be noted that ordinary least squares may be applicable in this case of known cointegrating vectors.7

In other applications, the values of A are unknown. In the case of the unknown cointegrating

vectors, a two-step method that is similar to Engle and Granger’s (1987) and Cooley and Ogaki’s

(1996) methods can be used. In this two-step method, the cointegrating vectors are estimated in

the first step.

In the first step, we estimate A, using a method to consistently estimate cointegrating vectors.

There exist many methods to estimate cointegrating vectors. Johansen’s Maximum Likelihood

(ML) Estimators for Equation (1) can be used for this purpose. If ρ is equal to one, estimators

based on regressions that are as efficient as Johansen’s ML estimators such as Phillips and Hansen’s

Fully Modified Estimation Method (1990), Park’s (1992) Canonical Cointegrating Regression, and

Stock and Watson’s (1993) estimators can be used. Ordinary Least Squares estimators are also

consistent when ρ is equal to one, but not as efficient as these estimators. We assume that AT is

the first step estimator, where T is the sample size, and AT converges to A at a faster rate than

7In our exchange rate model without measurement errors, ordinary least squres can be applied to an autoregressive
regression for the real exchange rate to estimate the structural speed of adjustment coefficient.
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T1/2.8

In the single equation method, an IV method is applied to

∆y1,t+1 = d1 − c102∆y2,t+1 − ...− c10n∆yn,t+1 + b1A
0yt (3)

+ c11∆yt + c
1
2∆yt−1 + ...+ c1p∆yt−p+1 + u1,t+1

where y i,t is the i-th element of yt, d1 is the first element in d, c10i is the i-th element of the first

row of C0, b1 is the first row of B, c1i is the first row of Ci, and u1,t is the first element of ut.

When bE[u1,t+1|Ht−τ ] = 0, any stationary variable in the information set available at time t - τ that

is correlated with variables in the right hand side of Equation (3) can be used as an instrumental

variable. In the case of the known cointegrating vectors, the known values of A are used in (3). In

the case of the unknown cointegrating vectors, AT obtained in the first step replaces A in Equation

(3). Because AT converges to A at a faster rate than T1/2, the first step estimation does not affect

the asymptotic distributions of the second step estimator under regularity conditions.

3.2 The System Method

In this section, we propose an econometric method that combines our single equation method

with Hansen and Sargent’s (1982) procedure to impose nonlinear restrictions implied by rational

expectations models.

Let yt = (y1,t,y2,t,y3,t,y4,t)0 be 4 × 1 vector of random variables with a structural ECM rep-

resentation (2). Assume that there exists only one linearly independent cointegrating vector A

such that A0yt is stationary. In the following, yt is partitioned into four subvectors, and each

subvector is given a different role. For expositional simplicity, we assume that each subvector is

one dimensional so that yt is a 4 × 1 vector, and that yt has only one cointegrating vector.
The first element of yt represents a gradual adjustment as in Equation (3), with nonzero b1

where bE[u1,t+1|Ht−τ ] = 0. We assume that the second element of yt is related to a discounted

sum of expected future values of the fourth element in the following form:

∆y2,t+1 = d2 − c201∆y1,t+1 − c203∆y3,t+1 − c204∆y4,t+1 (4)

+ αE[
∞X
j=0

δj∆y4,t+j+1|It] + εe,t+1

8Usually, AT converges at the rate of T, but there are cases where AT converges at the rate of T2/3(see West,
1988).
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where δ is a positive constant that is smaller than one, and α is a constant. As pointed out

by Hansen and Sargent, many linear rational expectations models imply that one variable is a

geometrically declining weighted sum of expected future values of other variables.

Hansen and Sargent’s (1982) methodology is to project the conditional expectation of the dis-

counted sum,
P∞

j=0 δ
j∆y4,t+j+1, onto an information set H t, which is a subset of I t, the economic

agents’ information set. Let bE[·|Ht] be the linear projection operator conditional on an information

set H t which is a subset of I t. Replacing the conditional expectation by the linear projection gives

∆y2,t+1 = d2 − c201∆y1,t+1 − c203∆y3,t+1 − c204∆y4,t+1 (5)

+ α bE[ ∞X
j=0

δj∆y4,t+j+1|Ht] + u2,t+1

where

u2,t+1 = εe,t+1 +E[
∞X
j=0

δj∆y4,t+j+1|It]− bE[ ∞X
j=0

δj∆y4,t+j+1|Ht] (6)

Because H t is a subset of I t, we obtain bE[u2,t+1|Ht] = 0.

The current and past values of the first difference of the third element of yt are used to form

the econometrician’s information set H t. Since bE[·|Ht] is the linear projection operator onto H t,

there exist possibly infinite order lag polynomials β(L), γ(L), and ξ(L), such that

bE[∆y3,t+1|Ht] = β(L)∆y3,t (7)

bE[∆y4,t+1|Ht] = γ(L)∆y3,t (8)

bE[ ∞X
j=0

δj∆y4,t+j+1|Ht] = ξ(L)∆y3,t (9)

Then following Hansen and Sargent (1980, Appendix A), we obtain the restrictions imposed on

ξ(L):

ξ(L) =
γ(L)− δL−1γ(δ)[1− δβ(δ)]−1[1− Lβ(L)]

1− δL−1
(10)

Substituting (9) into (5) gives the equation

∆y2,t+1 = d2 − c201∆y1,t+1 − c203∆y3,t+1 − c204∆y4,t+1 (11)

+ αξ(L)∆y3,t + u2,t+1
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where ξ(L) is given by (10). We now make an additional assumption that the lag polynomials

β(L) and γ(L) are finite order polynomials, so that

∆y3,t+1 = β1∆y3,t + β2∆y3,t−1 + ...+ βp∆y3,t−p+1 + u3,t+1 (12)

∆y4,t+1 = γ1∆y3,t + γ2∆y3,t−1 + ...+ γp−1∆y3,t−p+2 + u4,t+1 (13)

where bE[ui,t+1|Ht] = 0 for i = 3, 4. Here we assume β(L) is of order p and γ(L) is of order p-1

in order to simplify the exposition, but we do not lose generality because any of βi and γi can be

zero. Then as in Hansen and Sargent (1982), (10) implies

ξ0 = γ(δ)[1− δβ(δ)]−1 (14)

ξj = δγ(δ)[1− δβ(δ)]−1(βj+1 + δβj+1 + ...+ δp−jβp) + (γj + δγj + ...+ δp−jγp)

for j = 1, ... , p.

In the SECM form (2), we have B = [− b, 0, 0, 0]0, A = [1,−1,−1, 0]0,

C0 =


1 c102 c103 c104
c201 1 c203 c204
0 0 1 0
0 0 0 1

 , (15)

and

Cj =


c1j1 c1j2 c1j3 c104
0 0 αξj 0
0 0 βj 0
0 0 γj 0

 (16)

for j = 1,..., p, where γp = 0.

We have now obtained a system of four equations that consist of (3), (11), (12), and (13).

Because E[ui,t|It−τ ] = 0 and bE[ui,t|Ht] = 0, we can obtain a vector of instrumental variables z1,t

in I t−τ for u1,t and zi,t in H t for ui,t (i = 2, 3, 4).

Because the speed of adjustment b for y1,t affects the dynamics of other variables,9 there will be

cross-equation restrictions involving b in many applications in addition to the restrictions in (14).

Using the moment conditions E [zi,tui,t] = 0 for i=1,...,4, we form a GMM estimator, imposing the

restrictions in (14) and the other cross-equation restrictions implied by the model.

9Note that only y1,t adjusts slowly, but b affects dynamics of other variables because of interactions between y1,t
and those variables.
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Given estimates of cointegrating vectors from the first step, this system method provides more

efficient estimators than the single equation two step method proposed in previous section as long

as the restrictions implied by the model are true.10 On the other hand, the single equation two

step method estimators are more robust because misspecification in other equations does not affect

their consistency. The cross-equation restrictions can be tested by Wald, Likelihood Ratio type,

and Lagrange Multiplier tests in the GMM framework (see, e.g., Ogaki 1993a). When restrictions

are nonlinear, Likelihood Ratio type and Lagrange Multiplier tests are known to be more reliable

than Wald tests.

4 An Exchange Rate Model with Sticky Prices

In this section, we present a simple exchange rate model in which the domestic price adjusts slowly

toward the long-run equilibrium level implied by Purchasing Power Parity (PPP). This model is

used to motivate a particular form of a structural ECM in the previous section. The model’s two

main components are a gradual adjustment equation and a rational expectations equation for the

exchange rate. The single equation method in Section 3 is based only on the gradual adjustment

equation. The system method utilizes both the gradual adjustment and rational expectations

equations.

4.1 The Gradual Adjustment Equation

Let pt be the log domestic price level, p∗t be the log foreign price level, and et be the log nominal

exchange rate (the price of one unit of the foreign currency in terms of the domestic currency).

We assume that these variables are first difference stationary. We also assume that PPP holds in

the long run, so that the real exchange rate, pt − p∗t − et, is stationary, or yt = (pt, et, p∗t )0 is

cointegrated with a cointegrating vector (1,-1,-1). Let µ =E [pt − p∗t − et], then µ can be nonzero
when different units are used to measure prices in the two countries.

Using a one-good version of Mussa’s (1982) model, the domestic price level is assumed to adjust

slowly to the PPP level

∆pt+1 = b(µ+ p∗t + et − pt) +Et[p
∗
t+1 + et+1]− (p∗t + et) (17)

10As suggested by the results in de Jong (2001), the first step estimation can affect the asymptotic distributions of
the second step estimator because of the nonlinear restrictions in the system method. However, because the equations
are linear in this application, the reqularity conditions are likely to hold.
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where ∆xt+1 = xt+1 − xt for any variable x t, E [· |I t] is the expectation operator conditional on
I t, the information available to the economic agents at time t, and a positive constant b < 1 is

the adjustment coefficient. The idea behind Equation (17) is that the domestic price level slowly

adjusts toward its PPP level of p∗t + et, while it adjusts instantaneously to the expected change in

its PPP level. The adjustment speed is slow (fast) when b is close to zero (one).

From Equation (17), we obtain

∆pt+1 = d+ b(p∗t + et − pt) +∆p
∗
t+1 +∆et+1 + εt+1 (18)

where d = bµ , εt+1 = E t[p∗t+1+et+1] - (p∗t+1+et+1). Hence εt+1 is a one-period ahead forecasting

error, and E [εt+1|I t] = 0. Equation (18) can be referred as the structural gradual adjustment

equation. In the application of this paper, the gradual adjustment equation implies the first order

autoregression structure for the real exchange rate. To see this, let st = p∗t + et− pt be the log real

exchange rate. Then Equation (18) implies

st+1 = − d+ (1− b)st − εt+1 (19)

We define the half-life of the log real exchange rate as the number of periods required for a unit

shock to dissipate by one half in this first order autoregression. Without measurement errors, the

coefficient b can be estimated by Ordinary Least Squares directly from (18). In the presence of

measurement error, instrumental variables are necessary. We will consider cases with and without

measurement error.

4.2 The Exchange Rate under Rational Expectations

We obtain the other equations necessary for the system method estimation by adding the money

demand equation and the Uncovered Interest Parity condition. Let

mt = θm + pt − hit (20)

it = i∗t +E[et+1|It]− et (21)

where mt is the log nominal money supply minus the log real national income, i t is the nominal

interest rate in the domestic country, and i∗t is the nominal interest rate in the foreign country. In

(20), we are assuming that the income elasticity of money is one. From (20) and (21), we obtain

E[et+1|It]− et = (1/h){θm + pt − ωt − hE[(p∗t+1 − p∗t )|It]} (22)
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where

ωt = mt + hr∗t (23)

and r∗t is the foreign real interest rate:

r∗t = i∗t −E[p∗t+1|It] + p∗t (24)

Following Mussa, solving (17) and (22) as a system of stochastic difference equation for E [pt+j |I t]
and E [et+j |I t] for fixed t results in

pt = E[Ft|It−1]−
∞X
j=1

(1− b)j{E[Ft−j |It−j ]−E[Ft−j |It−j−1]} (25)

et =
bh+ 1

bh
E[Ft|It]− p∗t −

1

bh
pt (26)

where

Ft = (1− δ)
∞X
j=0

δjωt+j (27)

and δ = h/(1 + h).

We assume that ωt is first difference stationary. Since δ is a positive constant that is smaller

than one, this implies that F t is also first difference stationary. From (25) and (26),

et + p∗t − pt =
bh+ 1

bh

∞X
j=1

(1− b)j{E[Ft−j |It−j ]−E[Ft−j |It−j−1]} (28)

Since the right hand side of (28) is stationary,11 et + p∗t− pt is stationary. Hence Equation (28)

implies that (pt, et, p∗t ) is cointegrated with a cointegrating vector (1,-1,-1).

4.3 Hansen and Sargent’s Formula

In order to obtain a structural ECM representation from the exchange rate model, we use Hansen

and Sargent’s (1980, 1982) formula for linear rational expectations models. From (26), we obtain

∆et+1 =
bh+ 1

bh
(1− δ)E[

∞X
j=0

δj∆ωt+j+1|It]− 1

bh
∆pt+1 −∆p∗t+1 + εe,t+1 (29)

where εe,t+1 = bh+1
bh [E(F t+1|It+1) − E(Ft+1|It)], so that the law of iterated expectation implies

E [εe,t+1|It] = 0. The system method in Section 5 is applicable because this equation involves a

discounted sum of expected future values of ∆ωt.
11This assumes that E t(F t)-E t−1(F t) is stationary, which is true for a large class of first difference stationary

variable F t and information sets.
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Hansen and Sargent (1982) propose to project the conditional expectation of the discounted

sum, E [δj∆y4,t+j+1|It], onto an information set H t, which is a subset of I t, the economic agents’

information set. Let bE[· | H t] be the linear projection operator conditional on an information set

H t which is a subset of I t.

We take the econometrician’s information set at t, H t, to be the one generated by the linear

functions of the current and past values of ∆p∗t . Then replacing the economic agents’ best forecast,

E [
P∞

j=0 δ
j∆ωt+j+1|I t], by the econometrician’s linear forecast based on H t in Equation (29), we

obtain

∆et+1 =
bh+ 1

bh
(1− δ) bE[ ∞X

j=0

δj∆ωt+j+1|Ht]− 1

bh
∆pt+1 −∆p∗t+1 + u2,t+1 (30)

where

u2,t+1 = εe,t+1 +
bh+ 1

bh
(1− δ)Et[(

∞X
j=0

δj∆ωt+j+1|It)− bE( ∞X
j=0

δj∆ωt+j+1|Ht)] (31)

Because H t is a subset of I t, we obtain bE[u2,t+1|Ht] = 0.

Since bE[·|Ht] is the linear projection operator onto H t, there exist possibly infinite order lag

polynomials β(L), γ(L), and ξ(L), such that

bE[∆p∗t+1|Ht] = β(L)∆p∗t (32)

bE[∆ωt+1|Ht] = γ(L)∆p∗t (33)

bE[ ∞X
j=0

δj∆ωt+j+1|Ht] = ξ(L)∆p∗t (34)

Then following Hansen and Sargent (1980, Appendix A), we obtain the restrictions imposed by

(30) on ξ(L) :

ξ(L) =
γ(L)− δL−1γ(δ)[1− δβ(δ)]−1[1− Lβ(L)]

1− δL−1
(35)

Assume that linear projections of ∆p∗t+1 and ∆ωt+1 onto H t have only finite number of ∆p∗t
terms: bE[∆p∗t+1|Ht] = β1∆p

∗
t + β2∆p

∗
t−1 + ...+ βp∆p

∗
t−p+1 (36)

bE[∆ωt+1|Ht] = γ1∆p
∗
t + γ2∆p

∗
t−1 + ...+ γp−1∆p

∗
t−p+2 (37)

Here we assume β(L) is of order p and γ(L) is of order p-1 in order to simplify the exposition, but

we do not lose generality because any of βi and γi can be zero. Then as in Hansen and Sargent

12



(1982), equation (35) implies that ξ(L) = ξ0 + ξ1L+ ...+ ξpL
p, where

ξ0 = γ(δ)[1− δβ(δ)]−1 (38)

ξj = δγ(δ)[1− δβ(δ)]−1(βj+1 + δβj+1 + ...+ δp−jβp) + (γj + δγj + ...+ δp−jγp)

for j = 1,...,p.

Thus bE[ ∞X
j=0

∆ωt+j+1|Ht] = ξ1∆p
∗
t + ξ2∆p

∗
t−1 + ...+ ξp∆p

∗
t−p+1 (39)

Using (18), (30), (32), (33), and (39), we obtain a system of four equations:

∆pt+1 = d+∆p∗t+1 +∆et+1 − b(pt − p∗t − et) + u1,t+1 (40)

∆et+1 = − 1
bh
∆pt+1 −∆p∗t+1 + αξ1∆p

∗
t + αξ2∆p

∗
t−1 + ...+ αξp∆p

∗
t−p+1 + u2,t+1 (41)

∆p∗t+1 = β1∆p
∗
t + β2∆p

∗
t−1 + ...+ βp∆p

∗
t−p+1 + u3,t+1 (42)

∆ωt+1 = γ1∆p
∗
t + γ2∆p

∗
t−1 + ...+ γp−1∆p

∗
t−p+2 + u4,t+1 (43)

where α = bh+1
bh (1− δ) and u1,t+1 = εt+1.

Given the data for [∆pt+1, ∆et+1,∆pt+1,∆ωt+1]0, GMM can be applied to these four equations

as discussed in Section 3.2. There exist additional complications for obtaining data for ∆ωt+1 as

we discuss in Section 4.4.

The exchange rate model can be written in the SECM form (2) as in the system of equations

(40)-(43): we have yt = [∆pt+1, ∆et+1,∆p∗t+1,∆ωt+1]0, B = [− b, 0, 0, 0]0, A = [1,−1,−1, 0]0,

C0 =


1 −1 −1 0
1/bh 1 1 0
0 0 1 0
0 0 0 1

 , (44)

and

Cj =


0 0 0 0
0 0 αξj 0
0 0 βj 0
0 0 γj 0

 (45)

for j =1,...,p. For any nonzero constant ψ, ψ(1, -1, -1)0 is also a cointegrating vector. However,

the first row of B in (2) is b only when ψ is normalized to one.

In the exchange rate model in the previous section, b is a structural parameter of interest.

For the purpose of estimating b in the model, the restriction that C0 in (2) is lower triangular is

13



not attractive. However, as is clear from Equation (44), the structural ECM from the one-good

version of the exchange rate model does not satisfy the restriction that C0 is lower triangular for any

ordering of the variables. Even though some structural models may be written in lower triangular

form, this example suggests that many structural models cannot be written in that particular form.

It is instructive to observe the relationship between the structural ECM and the reduced form

ECM in the exchange rate model. Because

C−10 =


bh/(bh+ 1) bh/(bh+ 1) 0 0
−1/(bh+ 1) bh/(bh+ 1) −1 0

0 0 1 0
0 0 0 1

 , (46)

G = C−10 B = [-b2h/(bh + 1), b/(bh + 1), 0, 0]0. Comparing G and B shows contemporaneous

interactions between the domestic price and the exchange rate affect the speed of adjustment

coefficients. The speed of adjustment coefficient for the domestic price is b in the structural

model, while it is b2h/ (bh+1) in the reduced form model. The error correction term does not

appear in the second equation for the exchange rate in the structural ECM, while it appears with

the speed of adjustment coefficient of b/ (bh+1) in the reduced form model.

4.4 Applying the System Method to the Exchange Rate Model

In order to apply the system method to Equations (40)-(43) of the exchange rate model in the

previous section, we need data for ∆ωt, which requires the knowledge of h. Even though h is

unknown, a cointegrating regression can be applied to money demand if money demand is stable in

the long-run as in Stock and Watson (1993). For this purpose, we augment the model as follows:

mt = θm + pt − hit + ζm,t (47)

where ζm,t is the money demand shock, which is assumed to be stationary, so that money demand

is stable.

By redefining mt as mt − ζm,t, the same equations as those in Section 4.2 are obtained. For

the measurement of ∆ωt used in the system method, we note that the ex ante foreign real interest

rate can be replaced by the ex post real foreign real interest rate because of the Law of Iterated

Expectations. Using the money market clearing condition (47), we obtain

∆ωt+1 = ∆pt+1 − h∆it+1 + h∆i∗t+1 − h(∆p∗t+2 −∆p∗t+1) (48)
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With this expression, ∆ωt can be measured from price and interest rate data without data for

monetary aggregate and national income once h is obtained. This is useful because the latter data

are not available at the monthly frequency for many countries.

5 A Measurement Model

We apply the single equation and system methods to the exchange rate model in Section 4, using

quarterly exchange rate and aggregate price data for Canada, France, Germany, Italy, Japan, the

United Kingdom, and the United States from 1974:Q1 to 2001:Q1. In the model, we assume that

yt = (∆pt+1, ∆et+1,∆p∗t+1) is cointegrated with a known cointegrating vector (1,-1,-1). This

assumption may cause a problem in applications of the model to data in the post-Bretton Woods

period because many researchers have failed to reject the null hypothesis of no cointegration using

similar data sets. Because more favorable evidence for the assumption is often found when a longer

sample period is used, the failure to reject no cointegration may be due to low power of the no

cointegration tests in small samples (see, e.g., Rogoff, 1995 for a survey). Because the evidence

is mixed, a sensitivity analysis with respect to this assumption is in order. For the purpose of a

sensitivity analysis, we employ Cheung and Lai (1993) and Fisher and Park’s (1991) model with

measurement errors to allow the cointegrating vector to be different from (1,-1,-1).

5.1 Measurement Errors and the Single Equation Method

Let pmt and p∗,mt be the log measured domestic and foreign prices, which are related to the true

prices by

pmt = θ + φpt + νt (49)

p∗,mt = θ∗ + φ∗p∗t + ν∗t (50)

where E t−1[v t] = 0 and E t−1[v∗t ] = 0. We assume that true prices follow the model of Section 4

and satisfy PPP in the long-run. Then

pmt − φet − (φ/φ∗)p∗t = (θ − θ∗φ/φ∗) + φ(pt − et − p∗t ) + [νt − (φ/φ∗)ν∗t ] (51)

is stationary. Hence, yt = (pmt , et, p
∗,m
t )0 is cointegrated with a cointegrating vector (1, -φ, -φ/φ∗).

In the first step, we run a cointegrating regression of the form

pmt = ψ0 + ψ1et + ψ2p
∗,m
t + ζt (52)
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where ψ1 = φ, ψ2 = φ/φ∗, and ζt is stationary with mean zero.

In order to obtain the second step estimator, we use Equation (18) and∆pmt+1 = φ∆pt+1+∆νt+1

to obtain

∆pmt+1 = d− b[pmt − φet − (φ/φ∗)p∗,mt ] + (φ/φ∗)∆p∗,mt+1 + φ∆et+1 + wt+1 (53)

where d = b(µ+ θ − θ∗φ/φ∗), and

wt+1 = φεt+1 + νt+1 − (1− b)νt − (bφ/φ∗)νt+1 + (1− b)(φ/φ∗)ν∗t (54)

Because E t−1[w t+1] = 0, we can apply the two step procedure from the last section as long as the

instrumental variables are chosen from the information set available at t-1. In this case, the second

step is to apply an IV estimation method to Equation (53), where φ and φ∗ are obtained in the

first step estimation. Because E t−1[w t+1] = 0 and w t+1 is in the information set available at t+1,

w t+1 has a moving average (MA) representation of order one, and this serial correlation structure

needs to be taken into account (see, e.g., Ogaki 1993a for an explanation of methods which treat

this type of serial correlation in GMM).

5.2 Measurement Errors and the System Method

We use the measurement error model for the purpose of a sensitivity analysis with respect to PPP

as in the case for the single equation method. Again it is assumed that the model is true for the

true price levels, but that only measured prices that follow (49) and (50) are observed. Since pmt

and p∗,mt are observed instead of pt and p∗t , (49) and (50) are substituted into Equations (40)-(43)

in order to express these equations in terms of measured prices. It is also assumed that H t is the

information set generated by the current and past values of ∆p∗,mt instead of ∆p∗t .

As for the adjustment to the PPP level, (40) is replaced by (53). For ∆ωt, we use

∆ωmt+1 =
1

φ
∆pmt+1 − h∆it+1 + h∆i∗t+1 −

h

φ∗
(∆p∗,mt+2 −∆p∗,mt+1) (55)

so that

∆et+1 = d2 +
bh+ 1

bh
(1− δ) bE[ ∞X

j=0

δj∆ωmt+j+1|Ht]− 1

bhφ
∆pmt+1 −

1

φ∗
∆p∗,mt+1 + um2,t+1 (56)

where

um2,t+1 = u2,t+1 − bh+ 1

bh
(1− δ) bE[ 1

φ
νt − h

φ∗
ν∗t |Ht] +

1

bhφ
∆νt+1 − 1

φ∗
∆ν∗t+1 (57)
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and bE[um2,t+1|Ht−1] = 0.

Because the price level is assumed to be measured with errors as in (49),

mt = θ2 + (1/φ)p
m
t − hit + ζ2,t (58)

where θ2 = θm − θ/φ and ζ2,t = ζm,t − νt/φ. Because ζ2,t is stationary, a cointegrating regression

is applied to (58), assuming mt and i t are first difference stationary.

Thus we run two cointegrating regressions, (52) and (58), in the first step. In the second step,

GMM is applied to the system of four equations that consist of (53),

∆et+1 = − 1

bhφ
∆pmt+1 −

1

φ∗
∆p∗,mt+1 + αξ1∆p

∗,m
t + αξ2∆p

∗,m
t−1 + ...+ αξp∆p

∗,m
t−p+1 + um2,t+1 (59)

∆p∗,mt+1 = β1∆p
∗,m
t + β2∆p

∗,m
t−1 + ...+ βp∆p

∗,m
t−p+1 + u3,t+1 (60)

∆ωmt+1 = γ1∆p
∗,m
t + γ2∆p

∗,m
t−1 + ...+ γp−1∆p

∗,m
t−p+2 + u4,t+1 (61)

where h is replaced by its estimate from (58) and φ and φ∗ are replaced by their estimates from

(52). As before, because the first step estimators are super consistent, the first step estimation

does not affect asymptotic distributions of the second step GMM estimators under some regularity

conditions.

6 Empirical Results

In this section, we present empirical results for the system methods. Quarterly foreign exchange

rates and CPI from the International Financial Statistics (IFS) are used. The foreign exchange

rates are stated as the domestic price of one unit of foreign currency. In this paper, we use each

of the seven currencies alternatively as the base currency. The sample period is from 1974:Q1 to

2001:Q1.

For each country, we report results for two cases. The first case is when prices are measured

without error, which leads to the case of the known cointegrating vector. The second case is that of

the measurement error model of Section 5.1, in which the cointegrating vector for domestic prices,

exchange rates and foreign prices is not restricted to be (1,-1,-1). For the latter case, the two-step

method is used. In the first step, we use CCR to obtain long-run coefficients in PPP relations. In

the second step, we apply GMM to estimate the short-run coefficient.
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For the measurement error model, we need estimates of the coefficients in the cointegrating

relationship (52), which is based on PPP. Table 1 presents the results cointegrating regressions.

We report the third stage estimates of CCR for the coefficients and the fourth stage test results.

The deterministic cointegrating restrictions are rejected for 12 out of 42 cases at the five percent

significance level. The restriction is not rejected for all of Italian lire and Japanese yen based cases

at the five percent level. The null of stochastic cointegration is rejected for 14 out of 42 cases at

the 5 percent level of significant. For most of U.S. dollar, German mark and Japanese yen based

cases, the restrictions are not rejected at the five percent significance level for any H (1,q) test in

the table.

For the system method, our estimation procedure has two steps. First, we estimate the mon-

etary equilibrium equation to obtain interest elasticity of money demand. For the measurement

error model, we also obtain the measurement error coefficients, exploiting the long-run relationship

between domestic prices, foreign prices and exchange rates. In the second step, the speed of price

adjustment is estimated from the adjustment equation as well as the Hansen and Sargent equations.

To estimate the interest elasticity of money demand, we use the sum of M1 and Quasi Money

as the measure of the money stock, called M2, as the IFS suggests. The data for interest rates are

the three month T-bill rates, but three month deposit rates are employed for Japan because T-bill

rates are not available. We use nominal and real gross domestic product data in the IFS dataset

for all countries except the UK, for which we use the DRI data. All data series are seasonally

adjusted.

Table 2 shows the CCR results for the money demand equations. We assume that the income

elasticity of money demand is one. For each country, the first row reports the results when the

coefficient of the log price is restricted to be one, and the second row reports the results when the

coefficient is allowed to differ from one. When we employ the measurement error model, we use

the results reported in the second row.

The null of stochastic cointegration is rejected only for Germany, regardless of the assumption of

measurement errors at the 5 percent level. The deterministic cointegrating restriction is rejected for

Germany, Italy and Japan at the 5 percent level, when we allow for measurement errors. With the

prespecified cointegrating vector (1, -1, -1), France rejects the deterministic cointegrating restriction

at the 5 percent level, but do not reject it at 1 percent.

In all cases, the signs of the estimates for the interest elasticity of money demand are negative,
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as expected from the economic model. For Canada and France, the specification of measurement

errors does not affect the estimates for the interest elasticities. However, for Germany, Italy, Japan,

and the UK, the estimates from the measurement error models have smaller values than those from

the models without measurement error. Interestingly, these range from one fourth to one fifth of

the estimates from the no measurement error models for each country.

When we restrict the cointegrating vector to (1, -1, -1), the measurement error coefficients

are no longer free parameters. In this case, we have no problem when we separately run two

cointegrating regressions which include a common coefficient. But, if we allow for measurement

errors in price indices, then we have two estimates for the measurement error coefficient on the

domestic prices. One set of estimates is obtained from the PPP regression and the other set

from the money demand equation. There is no guarantee in practice for the two estimates to

be the same. If the estimates from the two equations are significantly different, it might imply

misspecification of the simple exchange rate model. Although this is the case, we use the estimates

from the PPP equation in Table 1 because we are more interested in PPP than in the money

demand equation. Park and Ogaki (1991) suggest the seemingly unrelated canonical cointegrating

regressions (SUCCR) method to deal with cross equation restrictions, when there are cointegrating

vectors in the equations. However, since the small sample properties of their estimator are not

better than CCR, we use the estimates from single equation CCR.

Table 3 reports the results of GMM estimation using the system method, equations (40)∼(43) for
the case of no measurement error, and equations (53) and (59)∼(61) for the measurement error case.
We also report the estimation results with additional sample period, namely 1974:Q1∼1990:Q2, to
see whether or not German Economic and Monetary Union affects our results. The results are not

very different for the full sample and the subsample. The instrumental variables are ∆p∗,mt−3 and

∆p∗,mt−4, which are foreign prices in all cases.
12 For each country, we report results for the known

cointegrating vector case and the unknown cointegrating vector case. In the system method, the

structural speed of adjustment coefficient b, appears in two equations: the gradual adjustment

equation, (18) or (40), or the Hansen-Sargent equation, (41). The model imposes the restriction

that the coefficient b in the gradual adjustment equation is the same as the coefficient b in the

Hansen-Sargent equation. We report results with and without this restriction imposed for the

system method of estimation. In the case of unrestricted estimation, bhs is the estimate of b from

12The selection of the instrumental variables is based on Akaike Information Criteria (AIC).
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the Hansen-Sargent equation, and bga is the estimate of b from the gradual adjustment equation.

The restricted estimate is denoted by br. The likelihood ratio type test statistic (see, e.g., Ogaki

(1993a) for an explanation of this test), denoted by LR, is used to test the restriction. In all

cases, this restriction is not rejected at the five percent level. Furthermore, for the test of the

Hansent-Sargent restrictions in equation (38), we also report the likelihood ratio type test statistic,

denoted by LR1.13 For all cases the null hypothesis is not rejected at the ten percent level, which

is evidence in favor of the Hansen-Sargent restrictions.

To obtain half-life estimate, we use the restricted estimate of the structural speed of the adjust-

ment coefficient, b, in each case. The half-life estimate is based on the first order autoregressive

process of the domestic price implied by Equation (33). Because 1 - b is the AR coefficient for

the first order AR representation, and because our data are quarterly, the half-life is calculated as

0.25 ln(0.5)/ ln(1 − b). All restricted estimates for the structural speed of adjustment coefficient

have the theoretically correct positive sign. Most of them are significant at the five percent level.

The results in Table 3 show that the half-life estimates range from 0.07 to 1.88 years. These

half-life estimates are shorter than one year and much shorter than the consensus of 3-5 years when

half lives are estimated by single-equation methods (see, e.g., Rogoff (1996) ).

7 Concluding Remarks

This paper compares reduced form ECMs with structural form ECMs. The speed of adjustment

coefficients in reduced form ECMs are different from those in structural form ECMs in general, and

in our example of an exchange rate model with sticky prices. We discussed a single equation IV

method and a system IV method to estimate structural speed of adjustment coefficients. These IV

methods do not require exogeneity assumptions, and can be applied to a broad range of structural

ECMs.

When the system method is applied to the exchange rate model, the speed of adjustment

coefficient is estimated from both the gradual adjustment equation for the domestic price and the

rational expectations equation for the exchange rate. The half-life estimates from the system

method seem to be shorter than two years and thus are shorter than the consensus of 3-5 years

when half lives are estimated by single-equation methods (see Rogoff (1996)). As explained by

13This test is done by conducting the likelihood ratio type test comparing the J with the Hansen-Sargent restriction
from the linear rational expectaions model and unrestricted one with free parameters.
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Rogoff (1996), price adjustment within 1 or 2 years is plausible, and the consensus of 3-5 years

is a puzzle. Given that Murray and Papell (1992) find that the single-equation methods do not

give much information about the half lives, the fact that the system method yields more plausible

estimates suggest that it extracts useful information about the half lives.

In this paper, we assumed the long-run PPP for CPI-based real exchange rate and uncovered

interest parity (UIP) for the short-term interest rate differentials in the exchange rate model.

Both of these conditions are often rejected by data. Therefore, this paper is just an initial step

toward utilizing information from an economic model to estimate the structural speed of adjustment

coefficient in an ECM. It is of interest to see how sensitive the results are when we relax these

assumptions. Kim (2003), and Kim and Ogaki (2002) have relaxed the long-run PPP assumption

by modifying the system method developed in this paper to a two-good model and applied it to

traded and non-traded good prices. They find plausible results that traded good prices adjust faster

than non-traded good prices.14 In the future work, we also plan to relax the UIP assumption.

For example, in Lim and Ogaki’s (2003) model, the UIP essentially holds for the long-term interest

rate differential, but the forward premium anomaly exists for the short-term interest differential.

It may be possible to develop a system method based on the UIP for the long-term interest rate

differential.

14Kim (2003) follows Stockman and Tesar (1995) and uses the implicit deflators of non-service consumption and
service consumption classified by type and total consumption deflators to construct the real exchange rate for traded,
non-traded, and general prices, respectively. Kim finds that the estimated half-lives for the rates of the traded
goods range from 0.17 to 0.91 year. For general price rates, the estimated half-lives are around 1.30 to 1.88 years
and for non-traded goods’ rates, the adjustment speeds to PPP are much slower than those for traded goods’ prices
and general prices. Kim and Ogaki (2002) use PPI, CPI, and GDP deflators to construct the real exchange rates
for traded, non-traded, and general prices, respectively. They find that the estimated half-lives of the PPI-based
real exchange rates range from 0.19 to 0.41 year. For the GDP deflator-based real exchange rates, the estimated
half-lives range from 0.32 to 0.86 year and for the CPI-based real exchange rates the half-life estimates fall in the
0.88- to 1.57-year range. This result is consistent with Kim (2003).
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Table 1. Purchasing Power Parity

Currency(1) ψ
(2)
0 φ(3) φ/φ∗(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA/U.S. 0.019 0.109 0.991 138.61 0.426 1.472
(0.244) (0.177) (0.063) (0.000) (0.513) (0.478)

FR/U.S. 0.006 0.237 0.906 0.401 0.231 0.921
(0.312) (0.112) (0.069) (0.526) (0.630) (0.631)

GE/U.S. -0.053 0.195 0.957 5.237 2.436 4.357
(0.980) (0.429) (0.114) (0.022) (0.118) (0.113)

IT/U.S. -1.045 0.185 0.910 0.488 0.327 0.472
(0.849) (0.154) (0.138) (0.484) (0.567) (0.789)

JP/U.S. -2.469 0.282 1.252 0.858 10.121 10.512
(1.212) (0.126) (0.143) (0.354) (0.001) (0.005)

U.K./U.S. 0.438 0.067 0.899 3.054 6.566 7.201
(0.350) (0.161) (0.071) (0.080) (0.010) (0.027)

CA/U.K. 0.809 0.004 0.818 5.042 3.633 4.901
(0.412) (0.245) (0.083) (0.024) (0.056) (0.086)

FR/U.K. -0.649 0.554 0.866 1.332 4.317 7.155
(0.624) (0.211) (0.067) (0.248) (0.037) (0.027)

GE/U.K. 2.244 -0.441 0.678 0.013 7.887 9.462
(0.585) (0.152) (0.092) (0.907) (0.005) (0.008)

IT/U.K. -0.573 0.037 1.049 4.920 0.887 2.746
(0.880) (0.136) (0.076) (0.026) (0.346) (0.253)

JP/U.K. 5.333 -0.394 0.298 0.379 20.848 22.331
(1.057) (0.101) (0.126) (0.539) (0.000) (0.000)

U.S./U.K. 1.257 -0.290 0.749 10.663 2.448 2.479
(0.433) (0.193) (0.088) (0.001) (0.117) (0.289)

FR/CA 0131 0.171 0.911 2.821 0.152 0.205
(0.517) (0.175) (0.094) (0.093) (0.696) (0.902)

GE/CA -0.741 0.139 0.869 0.780 7.734 9.850
(0.463) (0.140) (0.083) (0.376) (0.005) (0.007)

IT/CA -1.198 0.164 0.988 7.251 1.278 1.438
(0.862) (0.149) (0.099) (0.007) (0.258) (0.487)

JP/CA 0.021 0.046 0.957 0.187 13.589 17.066
(0.855) (0.086) (0.111) (0.665) (0.000) (0.000)

U.K./CA 0.689 0.042 0.833 1.978 0.502 0.711
(0.454) (0.272) (0.094) (0.159) (0.478) (0.700)

U.S./CA 0.109 0.081 0.978 1.463 5.180 5.553
(0.159) (0.123) (0.041) (0.226) (0.022) (0.062)
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Table 1. Purchasing Power Parity (continued)

Currency(1) ψ
(2)
0 φ(3) φ/φ∗(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA/FR 0.259 0.134 0.988 9.934 0.329 1.840
(0.271) (0.102) (0.048) (0.001) (0.565) (0.398)

GE/FR -2.653 0.474 1.662 41.441 2.391 12.334
(0.492) (0.189) (0.124) (0.000) (0.122) (0.002)

IT/FR -2.106 0.410 0.945 0.925 4.462 4.884
(0.718) (0.181) (0.109) (0.336) (0.034) (0.086)

JP/FR 4.285 -0.407 0.341 0.039 7.699 8.181
(0.864) (0.104) (0.125) (0.842) (0.005) (0.016)

U.K./FR 0.995 0.676 1.115 1.939 5.518 9.257
(0.560) (0.198) (0.066) (0.163) (0.018) (0.009)

U.S./FR 0.962 0.163 0.840 1.533 1.085 2.850
(0.368) (0.149) (0.080) (0.215) (0.297) (0.240)

CA/GE 1.908 0.511 0.685 6.923 0.931 1.800
(0.933) (0.222) (0.121) (0.008) (0.334) (0.406)

FR/GE 0.683 0.090 0.831 8.942 2.265 23.339
(0.358) (0.148) (0.091) (0.002) (0.132) (0.000)

IT/GE -0.254 0.032 0.982 9.989 0.150 0.587
(0.640) (0.169) (0.206) (0.001) (0.698) (0.745)

JP/GE 0.274 0.007 0.940 0.002 8.396 8.432
(0.698) (0.096) (0.088) (0.956) (0.003) (0.014)

U.K./GE 1.908 0.337 0.691 22.012 0.042 0.058
(0.824) (0.203) (0.118) (0.000) (0.835) (0.971)

U.S./GE 2.382 0.920 0.724 2.780 0.045 1.473
(0.618) (0.282) (0.073) (0.095) (0.831) (0.478)

CA/IT -0.123 -0.236 0.664 0.078 10.101 10.501
(0.757) (0.128) (0.073) (0.779) (0.001) (0.005)

FR/IT 2.285 0.406 1.008 0.051 2.070 2.191
(0.928) (0.237) (0.129) (0.821) (0.150) (0.334)

GE/IT 0.412 -0.285 0.534 1.454 15.221 15.714
(0.407) (0.086) (0.085) (0.227) (0.000) (0.000)

JP/IT 3.217 -0.371 0.935 1.386 15.368 15.504
(0.380) (0.073) (0.115) (0.238) (0.000) (0.000)

U.K./IT 0.316 0.068 0.815 1.568 0.002 5.814
(0.896) (0.135) (0.070) (0.210) (0.963) (0.054)

U.S./IT 0.186 -0.220 0.604 0.172 5.958 6.337
(0.567) (0.097) (0.079) (0.678) (0.014) (0.042)
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Table 1. Purchasing Power Parity (continued)

Currency(1) ψ
(2)
0 φ(3) φ/φ∗(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA/JP 2.952 0.278 0.619 0.169 0.004 6.004
(0.669) (0.070) (0.085) (0.680) (0.947) (0.050)

FR/JP 2.837 0.268 0.542 0.118 0.901 7.924
(0.813) (0.102) (0.117) (0.730) (0.342) (0.019)

GE/JP 2.082 0.249 0.732 3.126 0.665 0.711
(0.617) (0.092) (0.072) (0.077) (0.414) (0.700)

IT/JP 2.925 0.414 0.098 2.590 0.185 8.014
(0.596 (0.100) (0.172) (0.107) (0.666) (0.018)

U.K./JP 2.580 0.212 0.660 0.731 1.562 6.225
(1.242) (0.120) (0.146) (0.392) (0.211) (0.044)

U.S./JP 3.972 0.369 0.538 0.389 0.254 1.553
(0.692) (0.080) (0.078) (0.532) (0.614) (0.459)

Note: Results for pmt = ψ0 + φet + (φ/φ
∗)p∗,mt + ζt

Column (1): currencies

Column (2)∼(4): Standard errors are in parentheses.
Column (5)∼(7): P-values are in parentheses.
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Table 2. Money Demand Equation

Country(1) θ
(2)
2 1/φ(3) h(4) H(0, 1)(5) H(1, 2)(6) H(1, 3)(7)

CA -0.046 1 30.031 1.019 0.445 1.098
(0.247) (9.875) (0.313) (0.505) (0.578)
0.464 1.899 40.791 0.523 4.681 4.792
(0.456) (0.240) (16.200) (0.469) (0.030) (0.091)

FR -0.341 1 5.661 4.823 0.963 1.183
(0.071) (3.182) (0.028) (0.326) (0.554)
-0.337 0.253 5.560 2.036 0.097 0.321
(0.014) (0.038) (0.636) (0.153) (0.755) (0.851)

GE -0.272 1 17.882 1.537 1.600 4.575
(0.165) (9.856) (0.215) (0.206) (0.102)
-0.454 1.597 3.003 11.500 18.610 18.650
(0.022) (0.050) (1.307) (0.001) (0.000) (0.000)

IT -0.205 1 7.847 3.755 0.753 2.424
(0.172) (4.807) (0.053) (0.386) (0.298)
-0.508 0.078 1.994 9.247 1.560 5.979
(0.041) (0.013) (1.073) (0.002) (0.212) (0.050)

JP -11.312 1 39.661 3.274 3.229 5.353
(0.059) (5.827) (0.070) (0.072) (0.069)
-13.951 1.520 8.089 13.020 0.035 0.674
(0.784) (0.171) (5.228) (0.000) (0.852) (0.714)

U.K. 10.662 1 111.312 1.853 0.088 0.597
(3.410) (128.3) (0.173) (0.766) (0.742)
8.982 2.265 27.560 2.942 0.129 5.562
(0.273) (0.116) (9.306) (0.086) (0.720) (0.062)

U.S. -5.151 1 12.779 0.001 1.678 17.232
(0.156) (6.875) (0.965) (0.195) (0.000)
-4.951 0.960 14.208 1.631 2.735 24.362
(0.781) (0.168) (7.507) (0.201) (0.098) (0.000)

Note: Results for mt = θ2 + (1/φ)p
m
t − hit + ζ2,t

Column (1): domestic countries

Column (2)∼(4): Standard errors are in parentheses.
Column (5)∼(7): P-values are in parentheses.
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Table 3. The system Method Results for CPI-based Real Exchange Rates

Country(1) φ(2) φ/φ∗(3) Half-Life(4) b
(5)
r J

(6)
r b

(7)
u,hs b

(8)
u,ga J

(9)
u LR(10) LR1(11)

CA/U.S. 1 1 0.19 0.593 4.511 781.45 0.144 4.286 0.225 0.952
(0.039) (0166) (0.341) (17566) (0.646) (0.232) (0.635 (0.621)

0.109 0.991 0.17 0.634 8.272 2344.2 0.318 7.716 0.556 3.601
(0.027) (0.164) (0.082) (52805) (2.678) (0.052) (0.455) (0.165)

FR/U.S. 1 1 1.51 0.108 2.594 0.204 0.099 1.692 0.902 1.834
(1.276) (0.011) (0.627) (0.099) (0.135) (0.638) (0.342) (0.399)

0.237 0.906 0.90 0.174 2.490 0.324 1.868 2.046 0.444 0.688
(0.322) (0.013) (0.646) (0.134) (0.500) (0.562) (0.505) (0.709)

GE/U.S. 1 1 0.35 0.387 6.806 0.345 0.023 3.322 3.484 1.735
(0.094) (0.064) (0.146) (0.002) (0.007) (0.344) (0.062) (0.420)

73:I∼90:II 0.29 0.449 4.623 2677.8 -0.456 4.395 0.228 2.728
(0.134) (0.164) (0.328) (30464) (0.736) (0.221) (0.633) (0.255)

0.195 0.957 0.19 0.605 1.798 0.074 0.781 1.117 0.681 0.207
(0.067) (0.312) (0.772) (0.065) (0.341) (0.772) (0.409) (0.901)

73:I∼90:II 0.18 0.619 4.926 3874.9 0.556 4.517 0.409 3.538
(0.055) (0.288) (0.294) (77527) (0.374) (0.210) (0.522) (0.170)

IT/U.S. 1 1 0.26 0.489 2.618 2698.8 0.754 2.054 0.564 1.554
(0.154) (0.270) (0.623) (27157) (1.250) (0.561) (0.452) (0.459)

0.185 0.901 0.10 0.816 1.598 0.971 0.361 1.385 0.213 0.237
(0.014) (0.402) (0.808) (2.270) (0.239) (0.708) (0.644) (0.888)

JP/U.S. 1 1 0.43 0.330 4.556 601.31 7.688 1.876 2.680 2.222
(0.264) (0.098) (0.335) (61672) (4.289) (0.598) (0.101) (0.329)

0.282 1.252 0.23 0.524 2.828 0.130 0.803 1.789 1.039 0.491
(0.093) (0.221) (0.586) (0.021) (0.663) (0.617) (0.308) (0.782)

U.K./U.S. 1 1 0.17 0.628 2.750 0.063 3.803 2.548 0.202 2.548
(0.026) (0.146) (0.600) (0.021) (2.874) (0.466) (0.653) (0.279)

0.067 0.899 0.72 0.213 5.621 938.78 12.350 5.479 0.142 4.273
(1.475) (0.117) (0.229) (21638) (4.049) (0.139) (0.706) (0.118)

CA/U.K. 1 1 0.47 0.308 1.685 0.024 0.816 0.206 1.479 0.413
(0.013) (0.004) (0.793) (0.000) (0.891) (0.976) (0.223) (0.813)

0.004 0.818 0.25 0.497 4.144 0.042 2.499 1.435 2.709 2.817
(0.263) (0.493) (0.386) (0.020) (0.564) (0.697) (0.099) (0.244)

GE/U.K. 1 1 0.12 0.761 3.953 0.507 3.064 3.623 0.330 0.663
(0.009) (0.153) (0.412) (0.265) (1.019) (0.305) (0.565) (0.717)

73:I∼90:II 0.07 0.905 6.131 0.284 1.065 5.970 0.161 0.382
(0.002) (0.183) (0.189) (0.140) (0.201) (0.113) (0.688) (0.826)

-0.441 0.678 0.37 0.371 2.937 0.332 0.014 0.649 2.288 2.669
(0.740) (0.426) (0.568) (0.001) (0.028) (0.884) (0.130) (0.263)

73:I∼90:II 0.33 0.404 3.818 6669.8 3.396 2.946 0.872 0.115
(0.177) (0.142) (0.431) (91526) (0.828) (0.399) (0.350) (0.944)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(1) φ(2) φ/φ∗(3) Half-Life(4) b
(5)
r J

(6)
r b

(7)
u,hs b

(8)
u,ga J

(9)
u LR(10) LR1(11)

FR/U.K. 1 1 0.15 0.677 2.701 0.215 2.011 1.851 0.850 1.038
(0.035) (0.295) (0.609) (0.121) (0.596) (0.603) (0.356) (0.595)

0.554 0.866 0.12 0.768 1.640 889.60 0.776 1.578 0.062 1.378
(0.021) (0.390) (0.801) (42899) (0.379) (0.664) (0.803) (0.502)

IT/U.K. 1 1 0.22 0.545 6.808 0.330 1.369 6.611 0.197 4.450
(0.027) (0.078) (0.146) (0.363) (0.078) (0.085) (0.657) (0.108)

0.037 1.049 0.14 0.718 1.179 0.507 0.075 1.085 0.091 0.055
(0.039) (0.457) (0.881) (0.023) (0.110) (0.780) (0.762) (0.972)

JP/U.K. 1 1 0.13 0.745 2.519 3281.6 0.997 2.060 0.459 0.137
(0.025) (0.380) (0.641) (63132) (0.806) (0.559) (0.498) (0.933)

-0.394 0.298 0.09 0.842 4.878 0.066 0.677 3.933 0.945 1.882
(0.005) (0.187) (0.300) (0.087) (0.213) (0.268) (0.331) (0.390)

U.S./U.K. 1 1 0.59 0.253 4.223 1718.8 4.682 1.519 2.704 3.055
(0.244) (0.035) (0.376) (15995) (2.931) (0.677) (0.100) (0.217)

-0.290 0.749 0.08 0.873 3.112 0.283 0.963 3.085 0.027 0.331
(0.003) (0.162) (0.539) (1.025) (0.163) (0.378) (0.869) (0.847)

FR/CA 1 1 2.22 0.075 4.344 0.144 2.382 2.665 1.679 0.911
(43.511) (0.119) (0.361) (0.058) (0.751) (0.446) (0.195) (0.634)

0.171 0.911 0.14 0.703 5.483 0.362 -1.466 4.521 0.962 2.058
(0.033) (0.348) (0.241) (0.643) (0.375) (0.210) (0.326) (0.357)

GE/CA 1 1 0.66 0.230 1.957 0.327 2.091 1.788 0.169 0.271
(0.397) (0.041) (0.743) (0.116) (0.263) (0.617) (0.681) (0.873)

73:I∼90:II 0.27 0.471 5.384 0.369 0.608 4.992 0.392 0.859
(0.118) (0.176) (0.250) (0.762) (0.296) (0.172) (0.531) (0.650)

0.139 0.869 0.17 0.629 4.701 8748.3 0.045 4.477 0.224 1.312
(0.046) (0.264) (0.319) (90024) (0.180) (0.214) (0.636) (0.519)

73:I∼90:II 0.18 0.615 4.955 7113.2 0.502 4.667 0.288 0.634
(0.067) (0.340) (0.291) (2292.8) (0.361) (0.197) (0.591) (0.728)

IT/CA 1 1 0.89 0.177 4.932 3062.5 -0.398 4.344 0.588 1.884
(11.017) (0.470) (0.294) (44341) (0.664) (0.226) (0.443) (0.389)

0.046 0.957 1.15 0.140 2.370 0.281 4.023 2.335 0.035 3.126
(1.464) (0.029) (0.667) (0.068) (2.778) (0.505) (0.851) (0.209)

JP/CA 1 1 0.30 0.437 5.401 2207.1 0.233 1.914 3.487 0.591
(0.552) (0.605) (0.248) (33989) (3.500) (0.590) (0.061) (0.744)

0.046 0.957 1.15 0.140 2.370 0.281 4.023 2.335 0.035 0.086
(1.464) (0.029) (0.667) (0.068) (2.778) (0.505) (0.851) (0.958)

U.K./CA 1 1 0.13 0.733 3.123 0.022 0.718 3.109 0.014 1.393
(0.013) (0.180) (0.537) (0.016) (0.639) (0.375) (0.905) (0.498)

0.042 0.833 0.42 0.341 3.396 -0.076 1.044 1.724 1.672 1.545
(0.403) (0.169) (0.493) (0.070) (0.112) (0.631) (0.195) (0.461)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(1) φ(2) φ/φ∗(3) Half-Life(4) b
(5)
r J

(6)
r b

(7)
u,hs b

(8)
u,ga J

(9)
u LR(10) LR1(11)

U.S./CA 1 1 0.36 0.386 3.854 -0.047 0.814 1.729 2.125 0.477
(0.189) (0.127) (0.425) (0.039) (0.201) (0.630) (0.144) (0.787)

0.081 0.978 0.08 0.878 4.992 0.044 0.857 1.960 3.032 1.618
(0.003) (0.202) (0.288) (0.043) (0.182) (0.580) (0.081) (0.445)

CA/FR 1 1 0.59 0.256 5.749 0.042 0.949 5.430 0.319 0.490
(0.268) (0.040) (0.218) (0.004) (0.131) (0.142) (0.572) (0.782)

0.134 0.988 0.27 0.468 6.471 913.77 0.699 5.308 1.163 1.201
(0.150) (0.218) (0.166) (65601) (1.003) (0.105) (0.280) (0.548)

GE/FR 1 1 1.07 0.149 1.871 0.300 0.288 1.868 0.003 0.202
(1.031) (0.025) (0.759) (0.102) (0.334) (0.600) (0.956) (0.903)

73:I∼90:II 0.88 0.178 2.958 0.368 0.841 0.580 2.378 1.086
(1.196) (0.052) (0.564) (0.025) (0.232) (0.901) (0.123) (0.581)

0.474 1.662 0.26 0.482 3.600 0.001 0.693 2.823 0.777 1.096
(0.134) (0.221) (0.462) (0.000) (0.191) (0.419) (0.378) (0.578)

73:I∼90:II 0.30 0.441 7.357 0.175 1.414 6.622 0.735 1.111
(0.133) (0.151) (0.118) (2.587) (0.264) (0.084) (0.391) (0.573)

IT/FR 1 1 0.21 0.564 2.059 0.526 0.371 1.997 0.062 0.748
(0.107) (0.356) (0.724) (0.076) (1.129) (0.572) (0.803) (0.000)

0.410 0.945 0.44 0.325 2.508 1519.6 -0.285 1.641 0.867 0.774
(0.299) (0.105) (0.643) (19070) (1.406) (0.650) (0.351) (0.688)

JP/FR 1 1 1.04 0.154 3.459 2896.1 2.005 2.570 0.889 0.357
(14.856) (0.401) (0.483) (60717) (1.110) (0.462) (0.345) (0.836)

-0.407 0.341 0.15 0.677 5.023 0.247 1.129 2.799 2.224 1.469
(0.046) (0.384) (0.284) (0.164) (0.204) (0.423) (0.135) (0.479)

U.K./FR 1 1 0.51 0.288 2.210 0.307 0.500 1.451 0.759 0.071
(0.168) (0.038) (0.697) (6.941) (0.538) (0.693) (0.383) (0.965)

0.676 1.115 0.43 0.331 5.589 896.65 2.094 4.347 1.242 0.235
(0.376) (0.141) (0.231) (72470) (1.009) (0.226) (0.265) (0.889)

U.S./FR 1 1 0.48 0.301 5.957 4817.9 1.311 4.627 1.330 0.586
(0.430) (0.114) (0.202) (99270) (0.190) (0.201) (0.248) (0.746)

0.163 0.840 0.28 0.457 2.797 0.036 0.787 2.620 0.177 0.249
(0.153) (0.202) (0.592) (0.037) (0.211) (0.453) (0.673) (0.882)

CA/IT 1 1 0.13 0.739 2.877 0.209 0.988 1.433 1.444 0.163
(0.017) (0.246) (0.578) (38.050) (0.209) (0.697) (0.229) (0.921)

-0.236 0.664 1.63 0.101 1.621 9.656 1.527 1.429 0.192 0.606
(7.609) (0.053) (0.804) (28.380) (0.599) (0.698) (0.661) (0.738)

FR/IT 1 1 0.20 0.577 3.204 1556.1 0.924 1.101 1.923 2.428
(0.053) (0.198) (0.053) (77039) (0.645) (0.776) (0.165) (0.297)

0.406 1.008 0.12 0.777 6.831 0.413 0.999 5.035 1.796 2.144
(0.101) (0.203) (0.145) (0.135) (0.265) (0.169) (0.180) (0.342)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(1) φ(2) φ/φ∗(3) Half-Life(4) b
(5)
r J

(6)
r b

(7)
u,hs b

(8)
u,ga J

(9)
u LR(10) LR1(11)

JP/IT 1 1 1.10 0.146 0.244 1047.5 0.263 0.208 0.036 2.053
(10.182) (0.231) (0.993) (40154) (0.634) (0.976) (0.849) (0.358)

-0.371 0.935 1.88 0.088 0.864 0.123 -0.062 0.457 0.407 0.659
(95.997) (0.433) (0.929) (0.01) (0.282) (0.928) (0.523) (0.719)

U.K./IT 1 1 0.14 0.708 3.283 1029.7 0.887 2.241 1.042 1.050
(0.016) (0.175) (0.511) (67449) (0.261) (0.523) (0.307) (0.591)

0.068 0.815 0.09 0.849 3.004 269.83 0.859 2.850 0.154 0.890
(0.005) (0.224) (0.557) (66145) (0.225) (0.415) (0.694) (0.640)

U.S./IT 1 1 0.24 0.512 1.307 0.098 0.905 0.805 0.502 0.088
(0.368) (0.785) (0.904) (0.089) (0.626) (0.848) (0.478) (0.956)

-0.220 0.604 0.44 0.325 4.699 0.073 0.575 3.854 0.845 0.435
(0.376) (0.132) (0.319) (0.067) (0.396) (0.277) (0.357) (0.804)

GE/IT 1 1 0.16 0.669 3.762 0.031 0.883 1.801 1.961 1.788
(0.027) (0.215) (0.439) (0.109) (0.457) (0.614) (0.161) (0.409)

73:I∼90:II 0.13 0.727 4.762 0.603 1.352 2.435 2.327 0.505
(0.011) (0.147) (0.312) (0.173) (0.672) (0.487) (0.127) (0.776)

-0.285 0.534 0.25 0.503 2.727 0.112 -1.617 2.711 0.016 0.467
(0.120) (0.238) (0.604) (0.047) (5.152) (0.438) (0.899) (0.791)

73:I∼90:II 0.24 0.513 2.287 0.176 1.647 0.572 1.715 0.526
(0.133) (0.288) (0.683) (0.164) (1.341) (0.902) (0.190) (0.768)

CA/JP 1 1 0.36 0.381 6.555 904.17 1.151 4.009 2.546 1.201
(0.252) (0.161) (0.161) (52946) (0.387) (0.260) (0.110) (0.548)

0.278 0.619 1.86 0.089 5.005 0.024 0.234 3.093 1.912 1.489
(6.849) (0.032) (0.286) (0.003) (0.058) (0.377) (0.166) (0.475)

FR/JP 1 1 0.69 0.221 4.447 -0.125 0.655 2.408 2.039 1.517
(1.223) (0.110) (0.348) (20.860) (0.781) (2.492) (0.153) (0.468)

0.268 0.542 0.37 0.372 1.395 0.016 1.042 1.633 0.762 0.317
(0.261) (0.152) (0.844) (0.052) (0.065) (0.888) (0.382) (0.853)

GE/JP 1 1 0.51 0.286 3.032 5.617 1.672 2.127 0.905 0.899
(1.790) (0.395) (0.552) (6.422) (0.502) (0.546) (0.341) (0.638)

73:I∼90:II 0.49 0.297 0.881 0.324 0.479 0.357 0.524 0.354
(0.483) (0.122) (0.927) (0.011) (0.870) (0.948) (0.469) (0.837)

0.249 0.732 0.92 0.172 0.842 0.024 0.576 0.391 0.451 0.580
(2.216) (0.086) (0.932) (0.074) (0.732) (0.942) (0.501) (0.748)

73:I∼90:II 0.86 0.182 0.389 -0.005 0.050 0.347 0.042 0.015
(1.880) (0.088) (0.983) (1.266) (0.880) (0.951) (0.837) (0.992)

IT/JP 1 1 1.42 0.115 0.868 0.501 0.709 0.103 0.765 0.029
(10.264) (0.108) (0.928) (0.001) (0.235) (0.991) (0.381) (0.985)

0.414 0.098 0.36 0.385 6.049 2839.2 2.961 4.050 1.999 2.050
(0.092) (0.061) (0.195) (83321) (0.963) (0.256) (0.157) (0.358)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(1) φ(2) φ/φ∗(3) Half-Life(4) b
(5)
r J

(6)
r b

(7)
u,hs b

(8)
u,ga J

(9)
u LR(10) LR1(11)

U.K./JP 1 1 0.66 0.232 2.205 0.042 0.874 0.731 1.474 0.121
(0.207) (0.022) (0.697) (0.012) (0.273) (0.865) (0.224) (0.941)

0.212 0.660 0.17 0.646 5.547 926.78 0.939 3.914 1.633 1.826
(0.031) (0.202) (0.235) (80478) (0.411) (0.270) (0.201) (0.401)

U.S./JP 1 1 0.32 0.414 3.412 -0.066 -5.061 1.006 2.415 0.683
(0.489) (0.431) (0.489) (0.021) (9.738) (0.799) (0.120) (0.710)

0.369 0.538 0.11 0.802 2.684 1422.8 2.671 2.589 0.095 0.353
(0.012) (0.297) (0.611) (11120) (1.052) (0.459) (0.757) (0.838)

CA/GE 1 1 0.12 0.754 5.797 0.128 1.456 4.911 0.886 1.220
(0.020) (0.326) (0.214) (0.075) (0.213) (0.178) (0.346) (0.543)

73:I∼90:II 0.10 0.821 4.545 411.48 3.068 1.936 2.609 0.465
(0.004) (0.133) (0.337) (11620) (7.583) (0.585) (0.106) (0.792)

0.511 0.685 0.23 0.530 5.281 0.397 1.639 5.204 0.077 0.749
(0.037) (0.092) (0.259) (1.510) (0.169) (0.157) (0.781) (0.687)

73:I∼90:II 0.23 0.523 6.680 0.112 1.425 5.725 0.955 2.571
(0.059) (0.140) (0.153) (0.061) (0.246) (0.125) (0.328) (0.276)

FR/GE 1 1 0.35 0.393 7.691 0.016 1.549 6.246 1.445 3.470
(0.203) (0.146) (0.103) (0.360) (0.461) (0.100) (0.229) (0.176)

73:I∼90:II 0.22 0.545 0.865 0.179 0.005 0.448 0.417 0.020
(0.057) (0.161) (0.929) (0.004) (0.071) (0.930) (0.518) (0.990)

0.090 0.831 0.50 0.295 7.054 0.111 0.875 6.258 0.796 0.838
(0.503) (0.124) (0.133) (0.067) (1.289) (0.099) (0.372) (0.657)

73:I∼90:II 0.37 0.371 7.616 0.033 1.484 6.206 1.410 1.314
(0.168) (0.097) (0.106) (3.177) (1.524) (0.102) (0.235) (0.518)

IT/GE 1 1 0.33 0.410 0.649 -0.576 -1.872 0.272 0.377 0.049
(0.265) (0.225) (0.957) (0.196) (5.321) (0.965) (0.539) (0.975)

73:I∼90:II 0.12 0.776 1.089 0.605 0.151 0.597 0.492 0.504
(0.014) (0.281) (0.895) (0.154) (0.054) (0.288) (0.483) (0.777)

0.032 0.982 0.47 0.309 2.201 0.525 -0.027 1.953 0.248 1.256
(0.264) (0.077) (0.698) (0.012) (0.030) (0.582) (0.618) (0.533)

73:I∼90:II 0.49 0.296 2.261 0.026 6.196 1.959 0.302 1.520
(0.288) (0.072) (0.687) (0.378) (11.340) (0.581) (0.582) (0.467)

JP/GE 1 1 0.42 0.337 1.551 -0.091 -333.34 0.590 0.961 0.282
(0.084) (0.034) (0.817) (0.171) (113.6) (0.898) (0.326) (0.868)

73:I∼90:II 0.39 0.357 4.930 0.169 0.433 2.516 2.414 0.884
(0.247) (0.123) (0.294) (0.048) (0.112) (0.472) (0.120) (0.642)

0.007 0.940 1.46 0.112 4.775 0.104 1.860 2.550 2.225 1.307
(3.515) (0.034) (0.311) (0.059) (0.551) (0.466) (0.135) (0.520)

73:I∼90:II 0.86 0.182 2.951 0.131 0.225 0.653 2.298 1.885
(0.662) (0.031) (0.566) (0.010) (0.114) (0.253) (0.129) (0.389)
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Table 3. The system Method Results for CPI-based Real Exchange Rates (continued)

Country(1) φ(2) φ/φ∗(3) Half-Life(4) b
(5)
r J

(6)
r b

(7)
u,hs b

(8)
u,ga J

(9)
u LR(10) LR1(11)

U.K./GE 1 1 0.14 0.721 1.826 0.036 0.077 1.372 0.454 0.757
(0.014) (0.172) (0.767) (0.000) (0.302) (0.711) (0.500) (0.684)

73:I∼90:II 0.11 0.798 6.576 1322.1 2.397 3.791 2.785 0.456
(0.010) (0.250) (0.160) (65054) (2.019) (0.284) (0.095) (0.796)

0.337 0.691 0.18 0.628 3.172 -0.046 1.303 2.604 0.568 0.059
(0.026) (0.146) (0.529) (0.013) (0.766) (0.456) (0.451) (0.971)

73:I∼90:II 0.18 0.629 3.104 0.036 0.196 1.894 1.210 1.108
(0.047) (0.267) (0.540) (0.001) (0.161) (0.594) (0.271) (0.574)

U.S./GE 1 1 0.34 0.398 3.393 1549.7 1.079 3.065 0.328 0.108
(0.027) (0.021) (0.494) (41562) (0.297) (0.381) (0.566) (0.947)

73:I∼90:II 0.35 0.389 5.832 0.063 0.772 2.960 2.872 2.531
(1.059) (0.731) (0.211) (0.031) (0.561) (0.397) (0.090) (0.282)

0.920 0.724 0.94 0.169 0.427 1117.9 0.125 0.263 0.164 0.073
(0.874) (0.032) (0.980) (42207) (0.401) (0.966) (0.685) (0.964)

73:I∼90:II 0.16 0.653 5.201 917.37 0.827 5.051 0.150 0.734
(0.033) (0.229) (0.267) (43147) (0.051) (0.168) (0.698) (0.692)

Note; For the unresticted estimation, bu,hs is the estimate for the speed of adjustment coefficient obtained

from Hansen and Sargent equations, and bu,ga is the estimate for the coefficient obtained from the price

adjustment equation. LR1 is the results of likelihood ratio type tests for the hansen-sargent restriction.

Column (1): currencies

Column (2) and (3) are from Table 1.

Column (4), (5), (7) & (8): Standard errors are in parentheses.

Column (6), (9) , (10) & (11): P-values are in parentheses.

Column (4): Half-life in years.
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