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1. Introduction
The problem of testing when a nuisance parameter is present only under the alternative
arises in many economic and financial models. Examples include testing for parameter
stability in Structural Change, Threshold, and Markov-switching models. An extensive
list of examples can be found in Hansen (1996). In this paper, the model of reference is

y� = z ��θ + x��cg� (π) + ε�.
We want to test H� : c = 0. Under H�, the distribution of the observations does not
depend on some nuisance parameter π, whereas under the alternative, it depends on π.
Since π is not identified under the null, the traditional Wald, Lagrange Multiplier (LM)
and Likelihood Ratio (LR) tests have a nonstandard distribution.

The purpose of this paper is to construct new tests that have the advantage of having
chi-square distributions. The idea of these tests is the following. Under the null hypoth-
esis, the expectation of the score function is equal to zero for any value of the nuisance
parameter. It results in a continuum of moment conditions. To handle this infinity of
moment conditions, we apply the extension of the Generalized Method of Moments to a
continuum of moment conditions developed by Carrasco and Florens (2000). The obtained
estimator is asymptotically normal and therefore can be used to construct a Wald-type
test. This test has a standard chi-square distribution. We show that a member of this
class of tests is asymptotically equivalent to the LM test of H� : c = 0 in the regression

y� = z ��θ + x��c
�
g� (π)µ (dπ) + ε�

where µ is some finite measure. In some sense, we deal with the problem of an unidentified
nuisance parameter by replacing the unknown term g� (π) with � g� (π)µ (dπ), which is
known. This LM test has power against a wide range of alternatives and therefore can be
used as a diagnostic test for misspecification (Pagan and Hall, 1983).

In particular, we study the power properties of two tests. The first test is obtained
from a structural change model, g� (π) = I {t > Tπ} . In this case, � g� (π)µ (dπ) = t/T.
This test has optimal power against a trending coefficient model and, in addition, it has
power against a permanent structural change model. The second test originates from
a Threshold model, g� (π) = I {u� > π} , for some observed random variable u�. In this
case, � g� (π)F (dπ) = F (u�). This test has optimal power against a smooth transition
alternative and is shown to have power against Threshold and other kinds of smooth
transition models, as well as the Markov-switching model. These two tests are easy to
implement and are robust to the heteroskedasticity and the autocorrelation of the error
term.

The literature on testing in the presence of unidentified nuisance parameters can be
split into two categories. The first category corresponds to tests designed to test a specific
alternative. They are based on the likelihood and therefore have some optimality prop-
erties. These tests are the SupLM and ExpLM tests proposed by Andrews (1993) and
Andrews and Ploberger (1994). One difficulty with these tests is that their asymptotic
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distributions are not standard and often depend on unknown parameters. In the latter
case, critical values can not be tabulated. Hansen (1996) gives a method to compute the
p-values via simulations in such cases. The second category includes tests that use an
auxiliary model, which is supposed to approximate the true model. The auxiliary model
is chosen because it is easy to estimate and the resulting test has a standard distribution.
Tests of this type are the lack-of-fit test of Gallant (1977), tests based on expansions
(Granger and Teräsvirta, 1993), and the RESET test of Ramsey (1969). Our tests fit in
the second category.

The paper is organized as follows: Section 2 presents a general class of tests. Section 3
proposes a test that has power against permanent structural changes. Section 3 introduces
a test that has power against Threshold and smooth transition alternatives. Section 5
discusses the results of a limited Monte Carlo experiment. The proofs are in the Appendix.

2. A class of tests when a nuisance parameter is not identified
under the null

2.1. Model and null hypothesis
Consider the following regression

y� = z ��θ + x��cg� (π) + ε� (2.1)
where g� (π) is some scalar function of π and may be random. The null hypothesis of
interest is H� : c = 0. Note that the nuisance parameter π is not identified under H�,
therefore it is impossible to estimate π consistently under H� and the usual Lagrange mul-
tiplier (LM) test fails to be asymptotically chi-square. Model (2.1) includes the following
specifications:

Example 1. (Structural change model)
g� (π) = I {t > Tπ}
Example 2. (Threshold model)
g� (π) = I {u� > π} .
Example 3. (Exponential smooth transition model)
g� (π) = �1 − exp �−γ (u� − d)��� where π = (γ, d)� .
See Granger and Teräsvirta (1993), for a review of inference and testing with these

models. The observations are given by {y�, z�, t = 1, ...T} . The vector z� can be decom-
posed as z� = (x��, w��)� , where x� and w� may contain both lags of y� and exogenous vari-
ables, for instance we may have x� = (y���, y���, ..., y���, w

���)� and w� = (y�����, y�����, ..., y���, w
�
��)

�
where w�� and w�� are exogenous variables. The number of lags of y� entering in the
regression, l ≥ 0, is assumed to be known. For identification purposes, we assume that
the regressors x� and w� do not have elements that are perfectly correlated with each
other. π ∈ Π ⊂ R�, c ∈ R� and θ ∈ R��	.
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2.2. Test statistic
In this section, we propose a test statistic that asymptotically follows a chi-square distri-
bution. Let γ = (θ�, c�)� and define h� (π, γ) = �h�� (π, γ)� , h�� (π, γ)

��� by
h�� (π, γ) = z� (y� − z ��θ − x��cg� (π)) , (2.2)
h�� (π, γ) = g� (π) x� (y� − z ��θ − x��cg� (π)) .

h� is proportional to the score functions with respect to γ. For γ� = (θ��, 0�), we have a
continuum of moment conditions indexed by π :

E��h� (π, γ) = 0 for all π ∈ Π ⇒ γ = γ�, (2.3)
where E�� is the expectation with respect to the distribution indexed by γ�. These moment
conditions are satisfied for all π because π is not identified under H�. The idea is to use the
generalized method of moment estimator γ̂ = �̂θ, ĉ� to construct a Wald-type test that will
turn out to have a standard, nuisance-parameter-free distribution. Before presenting the
test, we need to define a space of reference. Let µ be a finite measure on Π chosen a priori
and L� (Π, µ) be the Hilbert space of (p+ q)−vectors of functions f = �f�, ..., f���	���
such that

‖f‖��� =
���	��
���

�
	 f� (π)�µ (dπ) <∞.

We assume that {h� (π, γ)} belongs to L� (Π, µ) for all γ. Let B be a bounded operator
from L� (Π, µ) to L� (Π, µ) . A generalized method of moments (GMM) estimator of γ is

γ̂ = arg min� ‖Bh
 (., γ)‖��� ,
where h
 (π, γ) = �
 �
���h� (π, γ) . The properties of GMM estimators based on a contin-
uum of moment conditions are worked out in Carrasco and Florens (2000) for Π = [0, 1]
and iid data, in Carrasco and Florens (2002) for Π = R� and iid data, and in Carrasco,
Chernov, Florens, and Ghysels (2004) for Π = R� and weakly dependent data. Under some
regularity conditions the GMM estimator of c, ĉ, is consistent (to 0) and asymptotically
normal under H�. As a result, a Wald-type test,

W
 = T ĉ�V̂ ��
 ĉ,
where V̂
 is an estimator of the covariance matrix of ĉ, converges asymptotically to a
chi-square distribution with p degrees of freedom. Note that W
 is not really a Wald test
and should be called a Hausman test because ĉ is not a consistent estimator of c under
the alternative. Indeed the moment conditions (2.3) are not satisfied for all π under H�
but only for π = π�, the true value of the nuisance parameter. W
 constitutes a class of
tests that have a standard distribution under H�. However, one difficulty with W
 is that
its power will depend on the choice of B and need to be verified on a case by case basis.
It may happen that, for some B, W
 does not have power.
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From now on, we assume that B is such that
Bh� (., γ) =

�
	 h� (π, γ)µ (dπ) .

For the moment conditions given by (2.2), we obtain
‖Bh
 (., γ)‖���

= ��	 h�
 (π, γ)µ (dπ)�� ��	 h�
 (π, γ)µ (dπ)� + ��	 h�
 (π, γ)µ (dπ)�� ��	 h�
 (π, γ)µ (dπ)� .
Minimizing ‖Bh
 (., γ)‖��� with respect to γ is equivalent to finding the solution, γ̂, of

�
	 h�
 (π, γ̂)µ (dπ) = 0, (2.4)

�
	 h�
 (π, γ̂)µ (dπ) = 0.

If moreover, g� (π)� = g� (π) as in Examples 1 and 2, γ̂ satisfies

�
���z� �y� − z ��θ̂ − x��ĉ

�
	 g� (π)µ (dπ)� = 0,


�
��� �

�
	 g� (π)µ (dπ)�x� �y� − z ��θ̂ − x��ĉ� = 0.

Hence γ̂ is the OLS estimator of γ in the regression
y� = z ��θ + x��c

�
	 g� (π)µ (dπ) + ε� (2.5)

and W
 is the Wald test for testing H� : c = 0 in (2.5).

2.3. Power
In this subsection, we provide sufficient conditions for the test W
 to have power. Here
we consider the general case where g� (π)� may be different from g� (π) . Define

x�� = x�
�
	 g� (π)µ (dπ) ,

x�� = x� �	 g�� (π)µ (dπ)
�	 g� (π)µ (dπ) ,

From the system of equations (2.4), θ̂ and ĉ are solutions of
�
� z� �y� − z

��θ̂ − x���ĉ� = 0, (2.6)
�
� x�� �y� − z ��θ̂ − x���ĉ� = 0.
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We investigate the power of W
 under the local alternative:
y� = z ��θ + x��� c√T + ε�, (2.7)

where x�� may be x�g� (π) but not necessarily. Let Σ�� = p lim
�� �
 �
���x�z� and simi-
larly define Σ���,Σ���� etc. and

M� =
� Σ�� Σ���

Σ��� Σ���� � and M� =
� Σ�� Σ���

Σ��� Σ���� � .
Assuming that (i) {ε�} satisfies E [ε�|Z�] = 0 and E [ε�� |Z�] = σ� where Z� is the σ−field
generated by {z�, g� (π) , y��	, g��	 (π) , ε��	, z��	, s ≥ 1} , (ii) p lim �
 �
��� z�z �� ≡ Σ�� is in-
vertible, (iii) M� is invertible, and (iv) the law of large numbers and central limit theorem
hold (a rigorous treatment will be given in Sections 3 and 4), we have√T ĉ− 
Σ���� − Σ���Σ���� Σ������ 
Σ���� − Σ���Σ���� Σ���� c �→

N �0, σ� 
Σ���� − Σ���Σ���� Σ������ 
Σ���� − Σ���Σ���� Σ���� 
Σ���� − Σ���Σ���� Σ������� .
Hence, W
 asymptotically follows a noncentral chi-square distribution with p degrees of
freedom and noncentrality parameter:

σ�c� 
Σ���� − Σ���Σ���� Σ����� 
Σ���� − Σ���Σ���� Σ������ 
Σ���� − Σ���Σ���� Σ���� c.
Remarks:

• The test W
 has power against alternatives of type (2.7) provided det (M�) �= 0 and
det (M�) �= 0. These assumptions seem reasonable and are satisfied in the examples
1 and 2 when x�� = x�� holds for all t (see Propositions 3.1 and 4.1 below).

• The noncentrality parameter is maximized when x�� = x�� holds for all t. This is the
implicit alternative of the test W
 in the sense of Davidson and McKinnon (1987).
For this alternative the test will have maximum power.

• The noncentrality parameter of W
 does not depend on x��, hence it is the same
as that of a LM test of H� : c = 0 in Model (2.5). Both tests have the same
asymptotic efficiency. As the LM test is easier to implement and has better finite
sample properties than the Wald test (Dufour, 1997), it is preferable to use the LM
test rather than W
 . This test will be denoted LM
 .

• LM
 can be used as a diagnostic test against a wide range of alternatives, in the
tradition of the specification tests studied by Pagan and Hall (1983). Gallant (1977)
tackles the same issue, namely testing c = 0 in Model (2.1). He suggests testing
c = 0 in the auxiliary model

y� = z ��θ + b��c+ ε�,
5



where
b� = [x�g� (π�) , ..., x�g� (π�)]

and π�, .., π� are plausible values of π. He also suggests using the first principal
components of the vector b� as regressors (instead of b� itself). In the case where
K = 1, his testing strategy coincides with ours for a specific choice of B : Bh (.) =
h (π�) .

2.4. Admissibility
Here, and in the rest of the paper, we will focus on the properties of LM� , the LM test
of H� : c = 0 in Model (2.5). First recall some definitions (see Lehmann, 1959). Let φ be
a test for testing H� : θ ∈ Ω� against H� : θ ∈ Ω�. φ is said to be of level α if

α ≤ P [φ rejects H�|θ] , θ ∈ Ω�.
The power function of φ is denoted

β� (θ) ≡ P [φ rejects H�|θ] .
A level-α test φ is unbiased if

β� (θ) ≤ α, θ ∈ Ω�,
β� (θ) ≥ α, θ ∈ Ω�.

The level-α unbiased test that is uniformly most powerful, ψ is such that for any other
level-α unbiased test φ,

β� (θ) ≤ β� (θ) , θ ∈ Ω�.
The following proposition establishes the finite sample (T fixed) optimality of LM�

against the specific alternative (2.5). The optimality of LM� follows from the Neyman-
Pearson Lemma and the equivalence between LM and LR tests (Leymann, 1959).
Proposition 2.1. Suppose ε�|Z� ∼ iidN (0, σ�). The test LM� is the uniformly most
powerful unbiased test for testing H� : c = 0 against H� : c �= 0 in (2.5).

Proposition 2.1 implies that LM� is admissible for testing H� : c = 0 against an
unspecified alternative as it is the best test against a specific alternative (2.5). In the
sequel, we will concentrate on Examples 1 and 2.

Example 1 (continued). In Section 3 below, we will study the LM test for structural
change. In this case Π = [0, 1]. For µ uniform on Π, we have

�
	 g� (π)µ (dπ) =

� �
� I {t > Tπ} dπ = t

T .
This LM test will be denoted SC� .
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Example 2 (continued). In Section 4 below, we study the LM test for threshold.
Here Π = R. For µ = F, an arbitrary finite function, we have

�
	 g� (π)µ (dπ) =

�
I {u� > π}F (dπ) = F (u�) .

This test will be denoted T� .
We will derive the properties of SC� and T� under alternatives, which differ from their

implicit alternatives.

3. A diagnostic test for parameter stability
3.1. Asymptotic properties of the test
In this section we study the properties of the LM test of H� : c = 0 in

y� = z ��θ + x��c tT + ε�. (3.1)

Let θ̃ be the OLS estimator of θ in the regression restricted under H� :
y� = z ��θ + ε�.

Assumption 3.1. {ε�} satisfies E [ε�|Z�] = 0 and E [ε�� |Z�] = σ� where Z� is the σ−field
generated by {z�, y���, ε���, z���, s ≥ 1}.
Assumption 3.2. {z�} satisfies:

(i) p lim �� ����� z�z �� = lim���E ��� ����� z�z ��� ≡ Σ		 where Σ		 is some positive-
definite, (p+ q) × (p+ q) matrix,

(ii) the matrix Σ

 ≡ p lim �� �����x�x�� is a positive-definite p× p matrix,
(iii) limsup��� �� �����E ‖z�‖��� <∞ for some ν > 0.
We make some remarks pertaining to the assumptions. Assumption 3.1 imposes that{ε�} is a homoskedastic martingale difference sequence. It will be relaxed in Assumption

3.4 below. Assumption 3.2 allows for random explanatory variables but rules out trending
regressors. In the sequel, we use the notation

Σ		 = 
 Σ	
 Σ	� � = �Σ

 Σ
�
Σ�
 Σ�� � , Σ
	 = Σ�	
,

S� =
��
��� tT x� �y� − z ��θ̃� ,

Σ� = 1
T ���z�z �� � �� z�x��� �� x�z �� � � �� ��x�x�� �� ,

Λ = (0���, I�)�.
7



The test we will use in the homoskedastic case is
SC� = 1

T σ̂�S �� �Λ�Σ��� Λ�S� .
where σ̂� = � �y�− z ��θ̃�� /T. Remark that S� can be rewritten as

S� = 1
T

��
��� �����x� �y�− z ��θ̃�

To see this, denote A� = (t+ 1) /T and B�−B��� = x� �y� − z ��θ̃� . Using the relationship�A��� (B� −B���) + �B� (A�− A���) = B�A� − A�B�, we have
��
��� tT x� �y� − z ��θ̃� = − 1

T
��
��� �����x� �y�− z ��θ̃�+ (T + 1)

T
��
���x� �y� − z ��θ̃�

= − 1
T

��
��� �����x� �y�− z ��θ̃� ,

because {x�} belongs to the regressors {z�} and θ̃ is the constrained estimator obtained
from ����� z� �y� − z ��θ̃� = 0.

Failure to account for serial correlation or conditional heteroskedasticity may result
in wrong conclusions about the parameter stability. This problem is well documented
in Tang and MacNeill (1993). Therefore, we also derive SCh� a misspecification-robust
version of the LM test proposed by White (1980) in the iid case and Newey and West
(1987a) in the dynamic case. First define Ω� , the kernel estimator of a long-run covariance
matrix:

Ω� =
������ ω � j

L� � Γ̂�, (3.2)

where L� is a bandwidth, Γ̂� = �������h� �̃θ�h���� �̃θ�/T, for j ≥ 0, Γ̂� = Γ̂��� for j < 0
and

h� (θ) = � z� (y� − z ��θ)�� x� (y� − z ��θ) � .
The term ω (x) is a kernel, it may be equal to (1 + |x|) I {|x| ≤ 1} if one adopts the
Newey and West estimator (1987b). Other kernels are studied by Andrews (1991). A
heteroskedasticity-robust version of the test is

SCh� = 1
T S �� �Λ�Ω��� Λ�S� .

Assumption 3.3. The kernel weight, ω, is either the Bartlett, Parzen, Tukey-Hanning
or Quadratic spectral kernel studied by Andrews (1991). Let ν be the parameter that
characterizes the smoothness of ω : ν = 1 for the Bartlett kernel and ν = 2 for the three
other kernels. The bandwidth L� satisfies L� → ∞ and L����� /T = O (1) .

8



Assumption 3.4. (a) {z�ε�} is strict stationary, α−mixing with mixing coefficient α�
and satisfies E (z�ε�) = 0. For some r ∈ (2, 4] , r > 2 + 1/ν, and some s > r,�����α��������	
� < ∞, (3.3)

‖z�ε�‖	 < ∞,
where ‖z�ε�‖	 = ��
 E |z�
ε�|	���	

and z�
 denotes the jth element of z� = �z��, ..., z�����
��
.

(b) E �‖z�z ��‖�� <∞ and E �‖z�y�‖�� <∞.
Assumption 3.4 allows for correlation and conditional heteroskedasticity of {ε�} . As-

sumption 3.4(a) is condition (V1) of Hansen (1992) plus strict stationarity. It guarantees
that the covariance matrix estimator, Ω� , is consistent. It also implies that {z�ε�} satisfies
a functional central limit theorem. By Doukhan (1994, page 47), we have ��� �������� z�ε�converges to a Gaussian process with covariance

k (π�, π�) = (π�∧ π�) ��
���E �z�z ���
ε�ε��
� ≡ (π�∧ π�)C��,
where π�∧ π� denotes the minimum of π� and π�. We will use the notation

C�� = � C�� C�� � = �C�� C��
C�� C�� � and C�� = C ���.

We now investigate the power of the tests SC� and SCh� against a local alternative
of the form

H�� : y� = z ��θ + x�� 1√T g �tT � + ε�,
where g is an arbitrary, p× 1−dimensional function defined on the (0, 1)− interval. Such
a specification includes, as a special case, the single structural change when g (v) =
cI (v ≥ π�) and the multiple structural change when g (v) = �� �� c I (π �� > v ≥ π ) and
π��� = ∞.
Proposition 3.1. (a) If Assumptions 3.1 and 3.2 hold, we have under H�� :

SC� !→ χ� �p, ϕ�V ��ϕ� ,
where

V = σ�Σ��
12 ,

ϕ = " �� �" �� Σ��g (v) dv�dπ − 1
2 " �� Σ��g (v) dv.

(b) If Assumptions 3.2, 3.3, and 3.4 hold, we have under H�� :
SCh� !→ χ� �p, ϕ�V ��# ϕ� ,
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where
V# = 1

12C��.
Under H�, both tests asymptotically have a standard distribution, which is a chi-

square with p degrees of freedom. Remark that the power of SC� and SCh� does not
depend on the regressors, w�. Consider the case where there is a common, one-time break
point so that g (v) = cI (v > π�) . π� is the location of the break, while c is its amplitude.
In this case, we have

ϕ = π� (1 − π�)
2 Σ��c.

It means that the test SC� always has power against a one-time structural change and
achieves its maximal power when the break occurs in the middle of the sample, π� = 1/2.
However, our SC� test will only have trivial power against alternatives with ϕ = 0. We
construct an example where ϕ = 0. Let g (v) = cg� (v) where c is a p−dimensional vector
and g� (v) is a scalar function,

g� (v) = �����
−1, 0 < v ≤ π�,1, π� < v ≤ π�,−1, π� < v ≤ 1.

If π� = 2π� = 2/√3, ϕ = 0 and the limiting rejection probability of SC� is the same as
under H�. However, the SC� test will, in general, have power against multiple-break al-
ternatives unless these breaks compensate each other, rendering ϕ = 0. This lack of power
against some multiple-change alternatives is not specific to our test. The CUSUM test
(Krämer et al. 1988), supLR (Andrews, 1993) and ExpLR tests (Andrews and Ploberger,
1994) also lack power against some alternatives. All these tests, including SC� , have no
power against alternatives where the process is stationary, this includes the case where y�
follows a Threshold autoregressive model (Tong, 1990), see e.g. Carrasco (2002).

So far, we chose to leave the specification of the alternative hypothesis in a rather
vague form. The reason is that, in practice, we rarely know whether g� experiences only
one change, multiple changes, or whether g� is a random coefficient. Of course, if the
alternative was completely specified, there might be tests that are more powerful than
ours.

3.2. Related Literature
In this subsection, we review the most popular tests for structural change. Brown, Durbin,
and Evans (1975) propose several tests of parameter stability, one is based on the cusum
of recursive residuals (the now famous CUSUM test) and another is based on the squares
of these residuals. The power properties of these tests have been investigated by Krämer,
Ploberger, and Alt (1988) and Ploberger and Krämer (1992). The CUSUM tests are not
robust to the autocorrelation of the error in the regression model. As pointed out by Pagan
and Hall (1983), a way to detect parameter inconstancy is to test for heteroskedasticity.
Szroeter (1978) proposes a test for heteroscedasticity that is similar in spirit to our test,
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indeed, he devises a test for an alternative of the type σ�� = t. His test can not be used
for testing parameter stability if there is heteroscedasticity in the model that is not due
to the parameter inconstancy. Our test is more closely related to the AvgLM test of
Andrews and Ploberger (1994). Consider Model (2.1) in the case of a one-time structural
change, that is g� (π) = I {t > Tπ} . For π given, the Lagrange Multiplier test for testing
H� : y� = z ��θ + ε� against H� : y� = z ��θ + x��cI {t > Tπ} + ε� is

�LM� (π) =
�
�

��	�������x	 �y	 − z �	θ̃���� �Λ�Ĩ� (π)��Λ� �
�

��	�������x	 �y	 − z �	θ̃��� ,
where Ĩ� (π) is the estimator of the covariance matrix of the moment conditions,

h� (θ�) = � ����� z� (y� − z ��θ�)����������x� (y� − z ��θ�) � ,
evaluated at θ = θ̃. To handle the case where π is unknown, Davies (1977) proposes to
use

SupLM = sup��� �LM� (π) ,
where Π is a set with closure in (0,1). The properties of the supLM are studied in Andrews
(1993). Andrews and Ploberger (1994) propose a class of admissible tests that take the
form

ExpLM = (1 + a)���� "� exp �1
2

a
1 + a

�LM� (π)�dJ (π) ,
for some constant a > 0 and some distribution J on Π. These tests are shown to be
optimal for testing H� : c = 0 against a Bayesian alternative, in which the location of the
break, π, is distributed according to J and its amplitude, c, follows a normal distribution.
When a→ 0, the test becomes

AvgLM = "� �LM� (π) dJ (π) .
Nyblom (1989)’s test is closely related to AvgLM. The main difference between our test
and AvgLM lies in the treatment of π. In AvgLM, π is integrated out at the very end,
whereas, in SC� , π is integrated out when calculating S� . Indeed S� can be rewritten as

S� = " �� ��	�������x	 �y	 − z �	θ̃�dπ.
As a result SC� has a standard distribution and is nuisance parameter free. All the
tests discussed so far have non-standard distributions. The critical values of SupLM
and ExpLM have been tabulated by Andrews (1993) and Andrews and Ploberger (1994)
for the case where there are no exogenous variables in the model. In the presence of
exogenous variables, the distributions of the tests will depend on them and have to be
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tabulated on a case by case basis. However, the distributions do not depend on nuisance
parameters, see Andrews, Lee, and Ploberger (1996) and Forchini (2002). As the number
of admissible tests available in the literature is large, one criterion for choosing among
admissible tests should be the ease of application. Our test is as easy to implement as the
ExpLM test and has the extra advantage of having a standard distribution. Remark that
the Sup and Exp tests require selecting the interval Π where π is supposed to lie. Our
test does not have this requirement, no trimming of the interval (0,1) is needed. With
the same goal to provide an easy to apply test, Altissimo and Corradi (2002) propose a
LIL test that has the advantage of having a known critical value, moreover, it can handle
misspecification and heterogeneity. Their approach differs from ours because their test is
completely consistent, that is, its level goes to zero and its power goes to one.

4. A diagnostic test for threshold alternatives
4.1. Properties of the test
In Section 3, we proposed a test that is specifically designed for alternatives, in which
changes in g� are a deterministic function of the time, t. However, changes in g� may
be triggered by the values taken by some observable variable u�. This is the case in the
threshold model (Tong, 1990) and the smooth transition regression (Teräsvirta, 1994). In
this section, we study the LM test of H� : c = 0 in the following model

y� = z ��θ + x��cF (u�) + ε�, (4.1)
where F is a function chosen a priori, for instance, it may be the c.d.f. of the standard
normal distribution. The switching variable, u�, may be a lagged value of y� or an ex-
ogenous variable, including a subset of the regressors z�. The observations are given by{y�, z�, u�, v�, t = 1, ...T} . The variable v� and the function g appear only under the local
alternative (4.3).
Assumption 4.1. {ε�} is strictly stationary, ergodic and satisfies E [ε�|F�] = 0 and
E [ε�� |F�] = σ� where F� is the σ−field generated by {z�, u�, ε���, z���, u���, s ≥ 1}.
Assumption 4.2. {z�, u�, v�} is strictly stationary, ergodic and (i) there is a constant
C <∞ so that |F (u�)| < C and ‖g (v�)‖ <∞, (ii) Ez�z �� <∞ is positive definite.

Let
S� =

��
��	F (u�) x� 
y�− z ��θ̃�

where θ̃ = (�z�z ��)�	�z�y�.
Our test (denoted as T� for “Threshold”) is

T� = 1
T S

��V �	� S� ,
12



with
V� = σ̂� �Σ̂����− Σ̂��� �Σ�	�� �Σ��� �,

where Σ̂�� denotes the sample estimates of Σ�� and Σ̂��� and �Σ���� are the sample es-
timates of Σ��� = E [x�z ��F (u�)] and Σ���� = E [x�x��F � (u�)] , respectively. Moreover
Σ̂��� = Σ̂���� . To construct a test robust to the heteroskedasticity and the serial correla-
tion of the errors, we use a kernel estimator, Ω� , as defined in (3.2) with

h� (θ) = � z� (y� − z ��θ)F (u�)x� (y� − z ��θ) � .
A heteroskedasticity-robust version of the test is

Th� = 1
T S

�� 
Λ�Ω�	� Λ�S� .
Assumption 4.3. (a) {z�, u�, ε�} is strict stationary, α−mixing with mixing coefficient
α� and E (z�ε�) = 0, E (F (u�) x�ε�) = 0. For some r ∈ (2, 4] , r > 2+1/ν, and some s > r,	���	α�
	���	��
� < ∞, (4.2)

‖z�ε�‖� < ∞,
where ‖z�ε�‖� = 
�� E |z��ε�|��	�� and z�� denotes the jth element of z� = 
z�	, ..., z�
���
�� .

(b) E �‖z�z ��‖�� <∞ and E �‖z�y�‖�� <∞.
Under Assumption 4.3, we have� 	�� ����	F (u�)x�ε�	�� ����	 z�ε� � �→ N �� 0

0 � , � C���� C���
C��� C�� �� ,

where C����, and C�� are the long-run covariances of 	�� ����	F (u�) x�ε� and 	�� ����	 z�ε�,
C��� = lim��	������ E 
F (u�) ε�ε���x�z ����� , and C��� = C ����. We examine the power
of T� and Th� against local alternatives of the form

H	� : y� = z ��θ + x��g (v�)√T + ε�, (4.3)

where g is a p × 1 vector function of v�, and v� is a stationary random variable that
may or may not coincide with u�. This alternative includes (i) the threshold regression,
g (v�) = cI {v� ≥ r�} , for some unknown threshold r� (ii) the smooth transition regres-
sion (STR), g (v�) = cG (v�) , where G is some cdf (iii) the exponential STR, g (v�) =
c 
1 − exp 
−γ (v� − d)��� , (iv) the logistic STR, g (v�) = c (1 + exp (−γ (v� − d)))�	 , (v)
the Markov switching model (Hamilton, 1989) where v� is an exogenous two-state Markov
chain.
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Proposition 4.1. Under Assumptions 4.1, 4.2, and H	� ,
T� �→ χ� 
p, ϕ�V �	ϕ�

with V = σ� (Σ����− Σ���Σ�	�� Σ���) and
ϕ = E [F (u�)x�x��g (v�)] − E [F (u�) x�z ��] Σ�	�� E [z�x��g (v�)] .

Under Assumptions 4.2, 4.3, 3.3, and H	� ,
Th� �→ χ� 
p, ϕ�V �	� ϕ�

with V� = σ� (C����− Σ���Σ�	�� C��Σ�	�� Σ��� − C���Σ�	�� Σ��� − Σ���Σ�	�� C���) .
Note that the power of T� depends on the variables ω�, if u� is correlated with x�, and

w�. We can establish the following results:
• If F and g are independent from each other, then ϕ = 0 and the test does not have

power.
• If F is independent of z, then ϕ = cov (F, xx�g) .
• If g is independent of z, then ϕ = cov (Fxx�, g) .
• In particular, if F and g are independent of z and g (v�) = cG (v�) , where G is a

scalar function, then ϕ = cov (F (u�) , G (v�)) Σ��c. Hence, if F and G are correlated,
as in examples (i) to (iv) (with v� = u�), T� has always power. Maximal power is
achieved when F = G.

• Consider the case where v� is an exogenous Markov chain. Let g (v�) = v�, u� = y��	
and x� = y��	. In this case, ϕ �= 0 because v� is correlated with v��	 and hence y��	.
Therefore, T� will have power against a Markov-switching alternative. Note that
if v� were an independent sequence, as it is in the independent mixture model, T�
would have no power.

T� coincides with the Lagrange Multiplier test for testing an alternative STR of type
(ii) with g = cF and, therefore, it is optimal for this alternative. According to Godfrey
(1988, Chapter 3), T� is also optimal against a class of alternatives that are asymptotically
equivalent to H	 : c �= 0 in (4.1). Members of this class of alternatives are H� : y� =
z ��θ + x��g (u�, c) + ε� that satisfy � F (u�) = ��
�� ���	� 


��� ,g (u
, 0) = 0.
For instance, g (u
, c) = (1 − exp (−cF (u
))) is part of this class. The sample value of
the LM statistic will be the same whether the alternative is H� or H�, even though, they
appear dissimilar. The LR and Wald statistics for locally equivalent alternatives are only
asymptotically equivalent.
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4.2. Advantages over other Threshold tests
Tsay (1989) proposes a test for threshold nonlinearity that asymptotically follows a chi-
square distribution. Tsay’s test is based on arranged autoregression and predictive resid-
uals. It does not apply to the case of detecting a shift in the intercept in the absence
of regressors. Moreover, it is not robust to the serial correlation of the errors. Luukko-
nen, Saikkonen, and Teräsvirta (1988) propose to use a LM test based on an augmented
regression, see Granger and Teräsvirta (1993). One way to compare the performances
of these various tests against a specific alternative would be to compute the asymptotic
relative efficiency (see Davidson and McKinnon, 1987).

The test that is the closest to ours is the AvgLM test. Let �LM� (r) be the Lagrange
Multiplier test to test H� : c = 0 against H� : y
 = z �
θ+x�
cI {u
 > r}+ε
 for a given value
of r. When r� is unknown, Chan (1990) proposes to use, as a test, sup��� �LM� (r) where
R is a bounded interval within which r� is supposed to lie. Admissible versions of this test
are proposed by Andrews and Ploberger (1994). As for the structural change model, one
can define ExpLM and AvgLM tests by integrating over the nuisance parameter r. The
main problem with these tests is that the critical values depend on unknown parameters
and can not be tabulated. Hansen (1996) gives a method to compute the p-values in such
cases. On the contrary, our test has a standard distribution.

5. Monte Carlo experiment
5.1. Power of SC� and SCh� tests
We investigate the power performance of the tests SC� and SCh� in two cases. First, in
the case where the data generating process is a one-time structural change model:

y
 = 0.1y
�� + cy
��I{t > Tπ} + ε
, (5.1)
where ε
 is generated from a GARCH(1, 1) model with

ε
 =
�
h
η
, (5.2)

h
 = 1
2 + 1

2ε
�
�� + 1

4h
��,
and {η
} are i.i.d. standard normal. We set the true change point π� = 0.5 and c = 0.5,
0.8 under the alternative.

In the second case, the data generating process is the explicit alternative of the tests
SC� and SCh� , namely,

y
 = 0.1y
�� + cy
�� tT + ε
, (5.3)
where ε
 is as above and c is chosen to be 0.5 and 0.8 under the alternative.

Simulations are programmed in GAUSS 3.2. First, data are generated according to the
Data Generating Process above. Since we want to start from a stationary process, we gen-
erate 200 extra data and then discard the first 200 data. For comparison, we also perform
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the heteroskedasticity-robust versions of Andrews and Ploberger’s SupLM, AvgLM and
ExpLM tests. The interval [π, π̄] for computing these three tests has been selected to be
[0.15, 0.85] as suggested by Andrews (1993). The data are generated using the same seed
for all tests. The seed used to compute the empirical critical values corresponds to rndseed
39700802 and the seed used to compute the power corresponds to rndseed 39700803. We
compute both the empirical power and the size-corrected power. The critical values used
for the empirical power are the values tabulated by Andrews (1993) for the SupLM test
and Andrews and Ploberger(1994) for the AvgLM and ExpLM tests. We use the cut-off
point of the chi-square with 1 degree of freedom for SC� and SCh� . Note that SC� does
not converge to a χ� (1) due to the presence of heteroskedasticity. We still report the
empirical power of SC� as an indication of what one would get if the heteroskedasticity
is ignored.

To calculate the long-run covariance matrix,

Ω� =
�
�
���� ω( jL� )Γ̂�,

for the SCh� test statistic, we followed the methods suggested in Andrews (1991) and An-
drews and Monahan (1992) for Heteroskedasticity and Autocorrelation Consistent (HAC)
covariance matrix estimators. We used the Quadratic Spectral Kernel, a first-order VAR
prewhitening procedure, and an automatic bandwidth selection. To adjust for singular-
ity, we picked the cutoff point to be 0.95 (see the footnote on page 957 of Andrews and
Monahan (1992) for an analysis of it). In fact, we tried different cutoff points near 0.90
and it turned out that our results were insensitive to it. For the automatic selection of
the bandwidth parameter, we use a first order autoregressive model to approximate the
parametric models here. The specified weights are all chosen to be 1’s.

For both the empirical and size-corrected values tabulated, we adopted the same num-
ber of iterations and the same sample size. For the samples of size T = 60 and T = 100,
we used 2000 iterations. For the samples of size T = 200, 500, and 1000, we used 1000
iterations.

Discussion of the results:
Table 1 displays the empirical and size-corrected powers for the five tests when the

DGP is (5.1). We can see that:
i) The size distortion is smaller for SC� and SCh� than for Sup, Avg and Exp LM

tests. Diebold and Chen (1996) previously documented that the homoskedastic versions
of the Sup tests exhibit important size distortions in small samples when the persistence
in the data is high.

ii) SC� has the highest empirical power for all sample sizes. Its size-corrected power
is the highest in small samples but it is dominated by that of AvgLM and ExpLM for
T = 200.

iii) The empirical power of SCh� is bigger than that of Sup, Avg and Exp LM tests
for small samples, the reverse is true for large samples. The size-corrected power of SCh�
is comparable to that of other tests when T = 60, but it is dominated by that of AvgLM

16



and ExpLM for larger sample sizes. This makes sense since the AvgLM and ExpLM are
the optimal tests for structural change alternatives.

iv) Since our data is generated by a GARCH model, it is surprising to find that the
SC� test performs better than the robust SCh� test in some cases. The reason may
be that the correlation and the heteroskedasticity are not big enough (we choose the
coefficients to be �� and ��). But we can see that as the sample size goes to 500, or even
larger, 1000, the SCh� test catches up in terms of power.

Table 2 includes the empirical and size-corrected powers for the five tests when the
DGP is (5.3). We make the following observations:

i) SCh� performs better than Sup, Avg and Exp LM tests in terms of both the
empirical power and the size-corrected power. This is consistent with our theory, as the
test SCh� is optimal for the alternative (5.3).

ii) SC� has the highest empirical power for all T. Its size-corrected power is the highest
in small samples, but then is dominated by SCh� and AvgLM.

iii) The size-corrected power of SCh� is lower than that of SC� in small samples but
the reverse is true for samples of size T = 200 and larger.

5.2. Power of T� test
Assume that the DGP is a TAR model

y
 = 0.1y
�� + cy
��I (y
�� > r) + ε
, (5.4)
where ε
 follows a GARCH(1,1) with parameters described in (5.2) and the true value
of r is set to r = 0.05452 (the median of y
 under H�). Consider the tests T� and Th� ,
which are the LM test of H� : c = 0 against the alternative

y
 = αy
�� + cy
��Φ �y
��
σ̂ � + ε
,

where σ̂ is the sample standard error of y
. Note that the presence of σ̂ does not alter the
asymptotic distribution of the test. We compare the power of T� and Th� with that of the
heteroskedasticity-robust SupLM, ExpLM, and AvgLM of H� : c = 0 against H� : c �= 0
in (5.4). For r, we use the interval �y������� �, y������� �	 where y������� � and y������� � are
the 15th and 85th percentiles of the empirical distribution of y
 respectively. The tests
SupLM, ExpLM, and AvgLM do not have a pivotal distribution (see Tong, 1990). Hence
we compute their asymptotic p-values using the method described in Hansen (1996) based
on J = 300 artificial observations. From these p-values, we compute the empirical power
of the tests. As the distributions of SupLM, ExpLM, and AvgLM depends on unknown
parameters, there is no simple way to compute the size-corrected powers of these tests,
therefore we will not report them here. We obtain the power of T� and Th� using the
chi-square distribution with one degree of freedom. It is worth noting that while χ� (1) is
the asymptotic distribution of Th� , it is not that of T� because of the heteroskedasticity.
However, the results of T� are reported as a benchmark for what one would get if one
omits to take into account the heteroskedasticity.
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As before, we generate 200 extra data and discard them to ensure stationarity. Sim-
ulations are programmed in Gauss 5.0. The sample sizes under consideration are T =
50, 100, 200, 500, 1000. For each sample size, we iterate 1000 times. The results are re-
ported in Table 3 for two values of c, 0.4 and 0.8.

From Table 3, we see that the test Th� has greater power than SupLM, AvgLM, and
ExpLM for all values of c and sample sizes, except for T = 1000 and c = 0.4 where ExpLM
dominates. This shows that Th� is a good test to detect threshold nonlinearity.

6. Conclusion
This paper describes a class of tests for testing problems in which a nuisance parameter
exists under the alternative hypothesis but not under the null. We chose to focus on a
particular member of this class, which is simply a Lagrange Multiplier test. However, the
method proposed in Section 2 permits to construct other tests by choosing other formu-
lations of the operator B. The LM test we investigate in detail has the advantages of (i)
being simple to implement, (ii) having a standard chi-square distribution, and (iii) having
power against a wide range of alternatives. Moreover, a Monte Carlo experiment shows
that the tests SC� and SCh� have little size distortion and have good (empirical and size-
corrected) power in small samples compared to competing tests. This makes these tests
particularly attractive when working in small samples. Another Monte Carlo experiment
shows that the test Th� has a high power against a Threshold autoregressive alternative.
As the p-values of Th� are much faster to compute than those of the competing tests like
the SupLM test, Th� can be used as a quick way to detect threshold nonlinearities.

18



A. Proofs
Proof of Proposition 3.1. Let D [0, 1] be the set of all real valued functions on the
[0, 1]−interval that are right continuous and have left limits. Denote D [0, 1]� = D [0, 1]×
...×D [0, 1] the product metric space. We will establish the weak convergence in D [0, 1]
endowed with the Skorohod metric (see Billingsley, 1968).

(a) Note that
1√T S� = 1

T
�
�


��
1√T


����x� �y�− z ��θ̃�
= � �� 1√T

����
����x� �y�− z ��θ̃�dπ,

where [Tπ] denotes the integer part of Tπ. Replacing y� by its expression, we obtain
1√T S� = � �� 1

T
����
����x�x��g �s

T �dπ
− �	� �� 1

T
����
����x�z ��dπ
�√T �̃θ − θ��

+ � �� 1√T
����
����x�ε�dπ.

Replacing √T �̃θ − θ�� by its expression, we have
1√T S�

= � �� 1
T

����
����x�x��g �s

T �dπ (A.1)

− �	� �� 1
T

����
����x�z ��dπ
� �1

T
�z
z �
��� 1

T
�z
x�
g �t

T � (A.2)

+ � �� Z� (π) dπ
with

Z� (π) = 1√T
����
����x�ε�− �	� �� 1

T
����
����x�z ��dπ
� �1

T
�
����z
z

�

�� 1√T
�
�


��z
ε
.
Moreover by Lemma 4 of Krämer, Ploberger, and Alt (1988) and by Assumption 3.2(i),
the following relationships hold uniformly in π :

1
T

����
����x�z �� �→ πΣ��,
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1
T

����
����x�x��g �s

T � �→ � �
� Σ��g (v) dv,

1
T
�z
x�
g �t

T � �→ � �� Σ��g (v) dv.
It follows that

(A.1) + (A.2) �→ � ��
�� �

� Σ��g (v) dv�dπ − 1
2Σ��Σ���� � �� Σ��g (v) dv.

Moreover, using the matrix inversion formula, we have the simplification Σ�� = Σ��Σ���� Σ��.
Now, we turn our attention to the term Z� (π) . By Lemma 3 of Krämer, Ploberger,

and Alt (1988) and under Assumptions 3.1 and 3.2, weak convergence holds in D[0, 1].
The process ��� �������� x�ε� converges in distribution to a p−dimensional Gaussian process
with covariance σ�πΣ��. ��� ����� z
ε
 converges in distribution to a centered normal with
covariance σ�Σ��. By the continuous mapping theorem (CMT), Z� (.) converges inD [0, 1]�
to a Gaussian process, Z (.) ∼ N (0, K) where K is the covariance operator with kernel:

E �Z� (π�)Z� (π�)��
= σ� �π�∧ π�Σ�� − 1

2 (π� + π�)Σ��Σ���� Σ�� + 1
4Σ��Σ���� Σ���

≡ k (π�, π�)
where π� ∧ π� is the minimum of π� and π�. Again by the CMT, � �� Z� (π) dπ converges
in distribution to � �� Z (π) dπ. As Z(.) is a function of a Wiener process, it belongs a.s. to
C	 [0, 1] the space of continuous functions defined on [0, 1] . By Shorack and Wellner (1986,
page 42), � �� Z (π) dπ = (1, Z (.)) is normally distributed with mean zero and covariance:

(1, K1) = 
 �� 
 �� k (π�, π�) dπ�dπ�
= σ� �1

3Σ�� − 1
4Σ�
Σ��

 Σ
��

= σ�
12Σ��.

To complete the proof, it remains to show that
1
σ̂�Λ�Σ��� Λ �→ �σ�12Σ����� .

This follows again from Lemma 4 of Krämer et al. (1988).
(b) We first need to establish that Ω� converges in probability to

Ω = lim��� 1
T

����� �����E �h� (θ�) h���� (θ�)�
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with
h� (θ�) = � z�ε�� �� �x�ε� � .

Note that
Ω = �C

 ��C
���C�
 ��C�� � .

Note that {h� (θ�)} is not covariance stationary because of the term t/T , hence the con-
ditions of Andrews (1991) are not satisfied. However, the conditions of Hansen (1992)
do not require covariance stationarity, instead {h� (θ�)} needs to be α−mixing with α�
satisfying (3.3) in Assumption 3.4. As t/T is bounded, {h� (θ�)} is α−mixing with
the same coefficient as that of {z�ε�} . Moreover, we have √T �̃θ − θ�� = O	 (1) and
Esup��� ‖h� (θ)‖� < ∞ where N is a neighborhood of θ� by Assumption 3.4(b). The
conditions of Theorem 2 of Hansen (1992) are fulfilled and it follows that Ω� �→ Ω.

We start the proof as in (a). Under Assumption 3.4 and by Doukhan (1994), Z� (π)
converges in distribution in D	 [0, 1] to a Gaussian process Z̃ (π) with covariance kernel

k̃ (π�, π�) = π�∧ π�C��
−1

2π�Σ�
Σ��

 C
� − 1
2π�C�
Σ��

 Σ
�

+1
4Σ�
Σ��

 C

Σ��

 Σ
�.

Moreover � �� Z̃ (π) dπ is normally distributed with mean 0 and covariance
1
3C�� − 1

4
��Σ�
Σ��

 C
��+ �Σ�
Σ��

 C
����+ 1

4Σ�
Σ��

 C

Σ��

 Σ
�
= 1

12C��. (A.3)
The simplification in (A.3) follows from the fact that Σ�
Σ��

 = (I	 O	��) .

Proof of Proposition 4.1 Under H�� , we have
1√T S�

= 1
T

�����F (u�) x� 	
x��g (v�) − z �� � �����z�z ����
� ��
��z
x�
g (v
)�� (A.4)

+ 1√T
�����F (u�) x� 	
ε� − z �� � �����z�z ����

� ��
��z
ε
�� . (A.5)

Because {z�, u�} is stationary ergodic, the law of large numbers applies and (A.4)
converges in probability to ϕ. By Assumptions 4.1, 4.2, we have

� ��� �����F (u�)x�ε���� ����� z�ε� � �→ N �� 0
0 � , σ� �Σ��� � Σ�
�

Σ
�� Σ

 �� .
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Hence (A.5) converges in distribution to a normal with mean 0 and variance
σ� �Σ��� �− Σ�
�Σ��

 Σ
��� .

The limiting distribution of Th� is obtained as in the proof of Proposition 3.1.

B. Tables
Table 1: Empirical and size-corrected power of SupLM, AvgLM, ExpLM,

SC� and SCh� tests for the One-Time Structural Change Model
The DGP is � y� = 0.1y���+ cy���I{t > 0.5T} + ε�

ε� ∼ Garch(1, 1)

T Test c = 0.5 c = 0.8
Test size 1% 5% 10% 1% 5% 10%

60 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

1.6 3.4 6.85
1.05 8.85 20.65
1.25 4.85 12.5
2.95 16.65 28.9
2.05 6 13.05
1.15 11.05 27.35
16.5 33.7 45.85
8.7 24.65 35.7
3.1 17.25 32.15
3.4 18.55 29.75

2.65 7.35 19.15
1.6 25.25 49.15
2.6 16.35 36.6
9 46.8 65.8
4 18.6 38.75

1.8 35.1 61.75
48.15 69.65 77.95
33.4 60.15 71.7
9.7 42.85 63.55
12.1 44.5 59.95

100 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

2.05 8.15 18.15
6.75 25.5 41.7
1.6 11.85 27.2
9.15 30.9 48.2
3.3 15 30.85
6 28.85 46.1
31.55 51.2 62.25
13.15 33.7 47.8
7.05 34.15 51.55
7 28.65 44.65

8 35.5 60.7
29.4 69.75 82.7
9.35 48.75 73.7
41.45 77.7 90
16.9 57.8 77.45
30.95 75.7 89
75.3 88.85 92.65
52.6 78.2 86.8
34.45 73.25 87.6
34.05 68.3 83.65
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T Test c = 0.5 c = 0.8
Test size 1% 5% 10% 1% 5% 10%

200 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

11 36.8 54
21.8 48.9 62.7
8.8 41.6 59.8
21.6 51.2 67.8
16.5 48.2 64.7
22 53.5 68.4
64.3 79.1 84.4
24.3 55.6 67.9
30.7 63 75.8
23.4 51.6 66.9

62.6 88.6 95.2
78.4 94.5 97.6
55.8 91.4 98.2
78.7 96.2 99.2
74.3 94.4 98.7
79.7 96.1 99.3
96.5 98.5 99.2
81.5 95.1 96.6
81.1 96.1 98.2
74.2 92.8 96.9

500 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

60.3 83.9 90.8
52.7 86.8 92.3
50.8 81.9 91.2
48.7 88.2 94.3
66.6 87 93.5
48.4 89.5 94.1
92 95.4 96.8
44.5 83.8 92
72.5 88.9 93.3
68.1 86 92.2

97.3 99.5 100
96.2 99.8 100
96.2 99.3 99.8
95.7 99.7 100
98 99.6 99.9

95.5 99.7 100
99.6 99.8 99.9
95.9 99.4 99.6
97 99.5 99.7

96.3 99.1 99.7
1000 SupLM power

size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

91 97.3 99.1
83.9 98.1 99.1
87.6 96.2 98.5
87.7 97.7 99.1
92.6 97.9 99.2
88.2 98.5 99.2
99.4 99.7 99.8
86.5 97.2 98.8
92.8 97.8 98.8
87.5 96.8 98.5

99.7 99.9 100
99.6 99.9 100
99.8 99.8 99.9
99.8 99.8 100
99.8 99.9 99.9
99.7 99.9 99.9
100 100 100
99.7 100 100
99.5 100 100
99.2 100 100
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Table 2: Empirical and size-corrected power of SupLM, AvgLM, ExpLM,
SC� and SCh� tests for the trending coefficient model

The DGP is � y� = 0.1y���+ c �� y���+ ε�
ε� ∼ Garch(1, 1)

T Test c = 0.5 c = 0.8
Test size 1% 5% 10% 1% 5% 10%

60 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

1.6 2.8 5.05
1 6.2 13.75

0.9 3.2 8.1
2 10.6 19

1.75 4.35 8.8
1.1 7.8 17.1
8.25 20.45 29.1
4 13 21.95

2.3 10 21.3
2.6 10.9 19.15

2.3 5.55 10.35
1.5 13.5 26.15
2.05 10.25 21.1
6.05 26.25 39.2
2.9 10.9 20.75
1.75 18.2 35.2
24.85 45.25 55.7
15.6 33.95 47.15
5.65 24.9 42.15
7 26.4 39.05

100 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

1.2 4.15 9.85
3.35 13.65 23
0.95 6.3 14.5
4.55 16.2 27
1.65 7.6 15.8
2.85 14.7 25.7
15.3 30.65 40
6.25 16.85 27.8
3.3 17 30.95
3.2 14.45 25.6

3.05 13.85 28.4
11.5 36.85 50.45
5.05 24.55 42.4
19.6 45.65 60.35
6.55 26.05 43.1
12.15 41.05 57.55
44.55 64.6 74.65
23.5 47.25 61.4
15.6 46.35 63.8
15.55 41.7 57.3
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T Test c = 0.5 c = 0.8
Test size 1% 5% 10% 1% 5% 10%

200 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

2 12.2 24.3
6 20.7 31.3

2.9 15.1 29.9
7.9 22.7 38.2
4.3 17.8 33.2
6.6 22 37.1
34.3 53.1 61.7
7.3 26.5 38.5
11.3 34.4 49.2
7.6 24.9 39.3

19.4 48.7 64.9
33.2 61.3 73.2
26.4 60.3 74.8
43.2 67.3 82.1
31.1 62.2 77.6
37.7 67.5 80.2
78.6 89.6 93
44.7 72.8 79.7
49.8 77.5 87.6
41 69.1 80.7

500 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

16.9 41.8 57.9
13.4 48.9 61.2
14.7 41.3 58.5
13.8 52.2 68.6
21.1 47.9 64
11.4 53.3 66.9
68.4 79.7 85.4
12.3 46.9 66.6
34.3 62 73
28.6 56.3 69.4

73.6 90.1 96
66.6 92.9 96.7
76.2 93 96.7
75.5 95.6 97.9
81.5 94.2 97.5
66.3 95.5 97.9
97.8 98.7 99.1
76.1 93.8 97.6
88.8 97.1 98.4
85.7 95.7 98.2

1000 SupLM power
size correct.
AvgLM power
size correct.
ExpLM power
size correct.
SC� power
size correct.
SCh� power
size correct.

45.9 71.5 83.3
29.9 74.1 83.9
42.1 70.6 83.1
43.5 78.4 86.6
52 76.8 86.1

38.9 79.1 86.3
88.9 93.7 95.7
40.3 70.3 84
64.1 83.5 89.6
49.3 80 88.4

96.1 99.2 99.7
91.7 99.5 99.7
96.1 99.2 99.5
96.2 99.4 99.6
97.2 99.4 99.7
95.4 99.6 99.7
99.9 99.9 99.9
97.9 99.8 99.9
98.1 99.6 99.6
96.5 99.3 99.6
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Table 3: Empirical power of SupLM, AvgLM, ExpLM, T� and Th� for a
TAR model

The DGP is
� y� = 0.1y���+ cy���I (y��� > .05452) + ε�

ε� ∼ GARCH(1, 1)
T Test c = 0.4 c = 0.8

Test Size 1% 5% 10% 1% 5% 10%
50 SupLM

AvgLM
ExpLM

T�
Th�

0.3 6.4 15.9
0.3 8.1 19.7
0.2 7.8 19.2
0.1 2.8 6.2
1.8 10.4 24.6

0.6 7.8 17.1
0.6 11 22.7
0.3 9.7 20.4
0.6 3.6 10.7
1.1 11.2 26

100 SupLM
AvgLM
ExpLM

T�
Th�

3.7 20.4 30.7
6.1 22.3 35.9
5.7 22.3 35.4
3.2 13.3 24
7.1 26.7 41.8

4.8 23.3 40
6.6 30.7 51.1
6 29.4 50.5
5.5 22.1 39
7.3 35.8 57.1

200 SupLM
AvgLM
ExpLM

T�
Th�

12.9 38.3 52.9
16 42.5 57.2
16 42.8 57.4
11.8 34 46.1
22.4 49.2 61.6

22.2 55.9 73.6
30.2 63.6 79.4
30.2 64.7 81.1
29.7 61.9 75.3
36.3 74 86.3

500 SupLM
AvgLM
ExpLM

T�
Th�

41.6 66.7 76.4
46.2 68.9 78.7
46.6 69.2 79.3
45.3 66.7 77.9
52.8 71.6 80.4

70.9 89.3 95.2
74.4 91.6 97
77 92 96.9
89.1 97.4 99.2
83.7 96.1 98.4

1000 SupLM
AvgLM
ExpLM

T�
Th�

70.9 87.8 92.7
73.7 89.3 93.1
73.9 89.5 93.3
80.4 92.1 95.1
77.2 88.8 92.9

90.3 96.5 98.3
91.3 96.9 98.6
91.4 97 98.6
99.7 99.9 99.9
95.1 99.1 99.8
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