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1. INTRODUCTION

1.1. Motivation and Outline

This paper models an agent in a three-period setting who does not update accord-
ing to Bayes�Rule, and who is self-aware and anticipates her updating behavior
when formulating plans. The major contribution is a representation theorem for
a suitably de�ned preference that provides (in a sense quali�ed in the concluding
section) axiomatic foundations for non-Bayesian updating. One perspective on the
theorem is obtained through its relation to a dynamic version of the Anscombe-
Aumann theorem which provides foundations for reliance on a probability measure
representing subjective prior beliefs and for subsequent Bayesian updating of the
prior.1 Thus, while beliefs are subjective and can vary with the agent, updating
behavior cannot - everyone must update by Bayes�Rule. This Anscombe-Aumann
theorem is generalized here so as to render it more fully subjective - both the prior
and the way in which it is updated are subjective.
Non-Bayesian updating leads to changing beliefs and hence to changing pref-

erences over alternatives (Anscombe-Aumann acts). This in turn leads to the
temptation to deviate from previously formulated plans. Thus we are led to
adapt the Gul and Pesendorfer (2001, 2004) model of temptation and self-control.
While these authors (henceforth GP) strive to explain behavior associated with
non-geometric discounting, we adapt their approach to model non-Bayesian up-
dating.
More speci�cally, GP show that temptation and self-control are revealed through

the ranking of menus of lotteries;2 see the next subsection for an outline of their
model. Temptation arises because the ranking of lotteries which prevails when
menus are chosen (period 0), changes in period 1 when a lottery must be selected
from the previously chosen menu. Adapt their model �rst so that menus consist of
(Anscombe-Aumann) acts over a state space S2. In this setting, since preference

1A rough statement is as follows: if conditional preference at every decision node conforms
to subjective expected utility theory and is independent of unrealized parts of the tree, then
preferences are dynamically consistent if and only if they have a common vNM index and
conditional beliefs at each node are derived by Bayesian updating of the initial prior. For a
recent formalization in a Savage-style setting see Ghirardato (2002). For an Anscombe-Aumann
setting, which is more relevant to this paper, the assertion is a special case of the main result
in Epstein and Schneider (2003) regarding the updating of sets of priors.

2Kreps (1979, 1992) was the �rst to point out the advantage of modeling preference over
menus. See Dekel, Lipman and Rustichini (2001) and Nehring (1999) for more recent re�nements
and variations.
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over acts admits two distinct components - risk attitude and beliefs - one can con-
sider temptations that arise due to changes in only one of these components. We
do this here and focus on the e¤ects of changes in beliefs.3 Finally, we introduce
another state space S1, which can be thought of (roughly) as a set of possible
signals, one of which is realized after a menu is chosen but before choice of an
act. Then the above noted change in beliefs about S2 presumably depends on
the realized signal, and this dependence provides a way to capture non-Bayesian
updating. To illustrate the resulting connection between temptation and updat-
ing, the model admits the following interpretation: at period 0, the agent has a
prior view of the relationship between the next observation s1 and the future un-
certainty s2. But after observing a particular realization s1, she changes her view
on the noted relationship. For example, she may respond exuberantly to a good
signal after it is realized and decide that it is an even better signal about future
states than she had thought ex ante. Or the realization of a bad signal may lead
her to panic, that is, to interpret the signal as an even worse omen for the future
than she had thought ex ante. In either case, it is as though she retroactively
changes her prior and then applies Bayes�Rule to the new prior. The resulting
posterior belief di¤ers from what would be implied by Bayesian updating of the
original prior and in that sense re�ects non-Bayesian updating; for example, the
exuberant agent described above would appear to an outside observer as someone
who overreacts to data. The implication for behavior is the urge to make choices
so as to maximize expected utility using the conditional of the new prior as op-
posed to the initial prior. Temptation refers to experiencing these urges, which
here stem from a change in beliefs. Temptation might be resisted but at a cost.
As in GP, by assuming that preference is de�ned over (contingent) menus,

we are able to model the agent�s dynamic behavior via maximization of a stable
(complete and transitive) preference relation. This is possible because our agent
is sophisticated - she is forward-looking and anticipates her exuberance or, more
generally, her psyche as it a¤ects her reactions to signals ex post. Are individuals
typically self-aware to this degree? We are not familiar with de�nitive evidence
on this question and in its absence, we are inclined to feel that full self-awareness
is a plausible working hypothesis.4 Even where the opposite extreme of complete

3An appendix outlines the parallel analysis for changes in risk attitude. We focus on changes
in beliefs because we �nd this route to be both intuitive and useful - it leads to a new model of
and way of thinking about non-Bayesian updating.

4Comparable sophistication is assumed by GP and also in the literature on non-geometric
discounting where the agent is often modeled as gaming against herself (see Laibson(1997), for
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naivete seems descriptively more accurate, our model may help to clarify which
economic consequences are due to non-Bayesian updating per se and which are
due to naivete. Finally, it is the agent�s sophistication that permits updating
behavior to be inferred from her (in principle observable) ranking of contingent
menus. This permits us to model �time-varying beliefs� while staying within
the choice-theoretic tradition of Savage. We think it worthwhile to explore such
modest departures from standard models before discarding the entire framework.
Several systematic deviations from Bayesian updating have been discussed in

the psychology literature and some of these have been incorporated into modeling
exercises in behavioral �nance.5 Our model cannot address these �ndings directly
because the experimental literature deals with settings where prior probabilities
are given objectively, while our model deals with the case where probabilities are
subjective (which case we would argue is more relevant for economic modeling).
Nevertheless, we show in Section 2.3 that our model can accommodate updat-
ing biases analogous to several discussed by psychologists and in the behavioral
economics literature. This serves to demonstrate the richness of the model. Be-
cause it is also axiomatic, we suggest that it may provide a useful encompassing
framework for addressing updating and related behavior.
The di¤erence between objective and subjective probabilities is important for

how one thinks about non-Bayesian updating. When probabilities are objec-
tive, deviations from Bayes�Rule are typically viewed as mistakes, the results of
bounded rationality in light of the complexity and nonintuitive nature of Bayes�
Rule (see Tversky and Kahneman (1974), for example). We agree with this view
when probabilities are objective. However, updating behavior can be understood
di¤erently when probabilities are subjective. As described above, the agent in our
model is sophisticated and she uses Bayes�Rule, but she applies it to a retroac-
tively changing prior. Changing priors retroactively is not a �mistake�or a sign of
irrationality. After all, there are no objectively correct beliefs here, only an initial
prior formulated ex ante and the agent is presumably entitled to change her view
of the world given the new perspective a¤orded by the passage of time or the
realization of a particular signal. This way of thinking of non-Bayesian updating
in terms of changing priors recalls the literature, stemming from Strotz (1956),
concerning non-geometric discounting and changing tastes.

example).
5See the surveys by Camerer (1995) and Rabin (1998) for references to the psychology litera-

ture. Two recent applications in �nance that contain extensive bibliographies to the behavioral
literature are Brandt et al (2004) and Brav and Heaton (2002).

4



1.2. Updating, Temptation and Self-Control

This section elaborates on the GP model and on the way in which we adapt it.
Let�(X) denote the set of lotteries with payo¤s inX and let� be a preference

relation on menus of lotteries (suitably closed subsets of �(X)). The interpreta-
tion is that at an unmodeled ex post stage, a lottery is selected from the menu
chosen ex ante according to �. GP axiomatize a representation for � of the form

U (A) = max
x2A

�
U (x) + V (x) � max

y2A
V (y)

�
, (1.1)

for any menu A, where U and V are vNM utility functions over lotteries. For
singleton menus, U (fxg) = U (x) and thus U describes preference under commit-
ment, which we interpret as describing the agent�s view of what is in her best
interest. The function V describes the agent�s urges at the second stage. In the
absence of commitment, there is a temptation to maximize V and hence to de-
viate from the ex post choices that would be prescribed by U . Temptation can
be resisted, but at the cost of self-control given by maxy2A V (y) � V (x). A bal-
ance between commitment preference and the cost of self-control is achieved by
choosing a lottery ex post that maximizes the compromise utility function U +V .
Temptation and self-control costs are illustrated behaviorally by the ranking

fxg � fx; yg � fyg. (1.2)

The strict preference for fxg over fx; yg indicates that even though x is strictly
preferred to y under commitment, the presence of y in the menu is tempting. The
ranking fx; yg � fyg reveals that self-control is exercised to resist the temptation
and to choose x out of fx; yg. The above intuition is captured more generally in
GP�s central axiom of Set-Betweenness:6 For all menus A and B,

A � B =) A � A [B � B.

In the special case where A � B =) A � A[B, a menu can be valued according
to the best lottery in the menu as in the standard approach. See Kreps (1988,
Ch. 13) who coins the label strategic rationality.

6The axiom restricts the nature of temptation so that a set of alternatives is as tempting as
its most tempting member. See GP (2001, pp. 1408-9) for reasons why Set-Betweenness might
be violated. For further critical discussion and for a more general model of temptation see Dekel
et al (2004).
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The model to follow combines key elements of the GPmodel with the Anscombe-
Aumann model of subjective probability. At a formal level, we introduce state
spaces and consider preferences over (suitably contingent) menus of Anscombe-
Aumann acts rather than over menus of lotteries. There are 3 periods - an ex
ante stage 0, an interim period 1 when a signal s1 2 S1 is realized, and period 2
when remaining uncertainty is resolved through realization of some s2 2 S2. At
time 0, the agent chooses some F , an s1-contingent menu of acts over S2. She
does this cognizant of the fact that at time 1, after a particular s1 is realized,
she will update beliefs and then choose an act from the menu F (s1). Thus the
way in which she updates will a¤ect the ultimate choice of an act and therefore
also the desirability at time 0 of any contingent menu. In this way, the nature
of updating is revealed through preference over contingent menus. In particular,
because non-Bayesian updating would lead to the �wrong�choice of an act from
the menu after s1 is realized, the agent is led to value commitment at time 0.
Under suitable axioms, we derive a representation for time 0 preference that

admits the following interpretation: there are two measures p and q, rather than
a single measure as in Anscombe-Aumann and rather than two utility functions
as in (1.1). The signi�cance of p is that expected utility relative to p describes
preferences under commitment. Therefore, p can be thought of as the counterpart
of the Savage or Anscombe-Aumann prior. Updating does not play a role in
the ranking of contingent menus that provide commitment because these do not
permit any meaningful choice after realization of the signal. Suppose, however,
that the agent faces a nonsingleton menu after seeing the signal s1 and consider
the factors in�uencing her choice of an act from the menu. In analogy with
interpretation of the GP functional form (1.1) given above, the second measure q
represents the agent�s urges in the form of a retroactively new view of the world
at the interim stage. Her commitment view calls for choosing an act so as to
maximize conditional expected utility computed by applying Bayes�Rule to p,
but she is tempted to act in accord with her new prior and to maximize expected
utility using the Bayesian update of q. In balancing these forces, she behaves as
though applying Bayes�Rule to a compromise measure p� that lies between p and
q in a suitable sense: each s1-conditional of p� is a mixture of the conditionals of
p and q, where the mixture weights may vary with the signal s1. Consequently,
interim choice out of the menu given s1 is based on the compromise posterior
p� (� j s1). If q and p di¤er, then so also do p� and p, and updating deviates from
application of Bayes�Rule to the commitment prior p.
Note that temptation does not refer to whether or not to apply Bayes�Rule.
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Rather, precisely as in GP, it refers to the temptation to follow one�s urges in
making choices. The only di¤erence from GP is that here the con�ict is due to
changes in beliefs rather than in abstract utilities.
For an illustration of some of the preceding, consider the following example

which adapts GP�s motivating example (1.2). The example serves also to illustrate
how GP�s axiom of Set-Betweenness is adapted below to the present setting. Let
S1 = fsg; sbg. At time 0 the agent selects a contingent menu of portfolios, that is,
a menu for each possible signal. At time 1, after realization of a signal, a portfolio
is selected from the menu chosen previously for that state. Finally, there are three
possible portfolios - equity (consisting exclusively of stocks), a riskless bond and
diversified (div), which is a combination of stocks and the bond; each portfolio
is an act over S2 with bond being a constant act. Think of sg (sb) as constituting
good (bad) news about the return to stocks.
Consider the following time 0 ranking of contingent menus:

F �
�
fequityg if sg

fdivg if sb

�
�
�
fequityg if sg

fbond; divg if sb

�
�
�
fequityg if sg

fbondg if sb

�
� G:

(1.3)
All contingent menus commit the agent to equity in the event of sg, while F and G
provide perfect commitment also in the bad state. The ranking F � G indicates
that sb is only moderately bad news in the sense that it does not justify abandoning
stocks entirely. Note that updating is irrelevant to this ranking because there is no
interim choice, but it is critical for evaluation of the third contingent menu; denote
the latter by F [ G. In particular, interpret the ranking F � F [ G as follows:
because the two contingent menus agree given the good signal, the preference
between them depends only on what they deliver in sb. The agent knows her own
psyche and anticipates that once the bad signal is realized, she will update in a
way that exaggerates the importance of the bad news (through Bayesian updating
of the new prior q). Subsequently, she will be tempted to panic and to leave stocks
entirely. This temptation to choose a di¤erent portfolio than she would ex ante
under commitment, the source of which is her updating behavior, is captured by
the strict preference F � F [ G. She may anticipate successfully resisting this
temptation and choosing div from fbond; divg given sb, which case is captured
by F [G � G.7 But this choice is contrary to her updated beliefs and feelings of
panic and thus requires costly self-control.

7Alternatively, she may anticipate succumbing, in which case F [G � G.
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An agent with the ranking (1.3) would be willing to pay a positive price to
commit to F , say by having her portfolio managed by a suitable investment man-
ager. One might attempt to interpret the value of commitment in terms of risk
aversion that changes in a state-dependent way. For example, the agent may
anticipate becoming more risk averse in response to a bad signal, which might
lead to the temptation to choose bond from fbond; divg and hence to the time
0 ranking (1.3). We exclude this interpretation by adopting a suitable axiom of
state independence. To illustrate (a special case of) the axiom, let ` be a fourth
�security,�thought of as a roulette-wheel whose payo¤ is independent of the real-
ized state in S1 � S2. Suppose that the outcome x is the sb-conditional certainty
equivalent of ` in the sense that�

fequityg if sg

f`g if sb

�
�
�
fequityg if sg

fxg if sb

�
.

Then state independence requires that x also be the certainty equivalent condi-
tional on sg, that is,�

f`g if sg

fequityg if sb

�
�
�
fxg if sg

fequityg if sb

�
.

Where this invariance is accepted, state-dependent risk aversion is excluded, leav-
ing non-Bayesian updating as the only apparent explanation for (1.3).

2. MODEL

2.1. Primitives

The model�s primitives include:

� time t = 0; 1; 2

� outcome set X (compact metric)

�(X) denotes the set of lotteries (Borel probability measures) over X

it is compact metric under the weak convergence topology

� (�nite) period state spaces S1 and S2 corresponding to the uncertainty re-
solved at times 1 and 2
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� (� (X))S2 is the set of (Anscombe-Aumann) acts over S2

the generic act is f : S2 �! �(X)

� a closed subset M of (� (X))S2 is called a menu (of acts over S2)

M (S2) is the set of menus

it is compact metric under the Hausdor¤ metric8

� F : S1 �!M (S2) is a contingent menu

F (s1) is the menu of acts over S2 from which the agent can choose if s1 is
realized

� C = (M (S2))
S1 is the set of all contingent menus

� time 0 preference � is de�ned on C

The interpretation is that a contingent menu F is chosen ex ante (at time
0) according to �. Then at the interim stage t = 1, the agent observes the
realization of s1, updates her beliefs about S2, and �nally chooses an act from
the menu F (s1). The state s2 and hence also the outcome of the chosen act are
realized at time 2. Updating and choice behavior at time 1 are anticipated ex ante
and underlie the ranking � of contingent menus.
Contingent menus are natural objects of choice.9 The consequence of a physical

action taken at time 0 is that it determines a set of opportunities for further action
at time 1, which set depends also on the interim state s1; that is, the physical
action can be identi�ed with a contingent menu. For example, savings at time 0
and the realized state s1 determine wealth and asset prices, and hence a feasible
set of portfolios from which a choice can be made at time 1.
Degenerate contingent menus F , where each F (s1) is a singleton, play a special

role. Each such F can be identi�ed with a map F : S1 � S2 �! �(X) and thus
is an act over S1 � S2. The set of such acts is A � C.

8See Aliprantis and Border (1994, Theorem 3.58), for example.
9Kreps (1992) proposes contingent menus of alternatives (as opposed to acts) as the natural

objects of choice in a model of unforeseen contingencies; see also Nehring (1999). Contingent
menus of lotteries appear in Ozdenoren (2002).
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2.2. Utility

De�ne the utility function U on C in two stages. First, evaluate F via the (state-
dependent) expected utility form

U (F ) =
Z
S1

U (F (s1) ; s1) dp1, F 2 C, (2.1)

where p1 is a probability measure on S1 and each U (�; s1) is a utility function on
the collection of menus of acts over S2. Its speci�cation is the heart of the model.
The GP utility functional form (1.1) suggests the form

U (F (s1) ; s1) = max
f2F (s1)

fU (f ; s1) + V (f ; s1)g � max
f 02F (s1)

V (f 0; s1) , (2.2)

for suitable functions U (�; s1) and V (�; s1). The particular speci�cation that we
adopt is

U (F (s1) ; s1) = max
f2F (s1)

�Z
S2

u (f) dp(� j s1) + � (s1)

Z
S2

u (f) dq(� j s1)
�

(2.3)

� max
f 02F (s1)

� (s1)

Z
S2

u (f 0) dq(� j s1),

where components of the functional form satisfy the regularity conditions:

Reg1 u : � (X) �! R1 is mixture linear, continuous and nonconstant.

Reg2 Each p(� j s1) and q(� j s1) is a probability measure on S2, q(� j s1) is
absolutely continuous with respect to p(� j s1).

Reg3 � : S1 �! [0;1).

Reg4 p1 has full support on S1.

Utility is de�ned by (2.1), (2.3) and the regularity conditions.
Let p be the measure on S1 � S2 generated by p1 and the conditionals fp(� j

s1) : s1 2 S1g. It is convenient also to de�ne the measure q generated by p1 and
the conditionals fq(� j s1) : s1 2 S1g. Then p1 is the S1-marginal of p, p(� j s1) is
the Bayesian conditional of p, and similarly for q. Further, q and p have identical
S1-marginals and q is absolutely continuous with respect to p (denoted q << p).
Note that the full support assumption is without loss of generality in that states
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s1 for which p1 (s1) = 0 could be deleted - our model has nothing to say about
updating in response to �null" events.
The representation admits the interpretation outlined in the introduction. For

prospects that o¤er commitment, that is, if F 2 A, utility simpli�es to

U (F ) =
Z
S1�S2

u (F ) dp, for F 2 A. (2.4)

Thus p is the commitment prior, and is the counterpart of the usual prior. Since
p is formed with the detachment a¤orded by the ex ante stage, the agent views
the beliefs described by p as �correct.�
For a general contingent menu F , U (F (s1) ; s1) =

max
f2F (s1)

�Z
S2

u (f) dp(� j s1) + � (s1)

�Z
S2

u (f) dq(� j s1)� max
f 02F (s1)

Z
S2

u (f 0) dq(� j s1)
��
.

Though the Bayesian update p(� j s1) is the �correct�conditional to use at time 1.
However, choice of an act from the menu F (s1) is in�uenced also by the fact that
the agent retroactively adopts the revised prior q, which leads to a temptation to
maximize

R
S2
u (f 0) dq(� j s1). To the extent that she resists this temptation and

chooses another act f , she incurs the (utility) self-control cost

� (s1)

�
max

f 02F (s1)

Z
S2

u (f 0) dq(� j s1)�
Z
S2

u (f) dq(� j s1)
�
;

� (s1) parametrizes the cost of self-control in state s1 (see further discussion in
Section 3.2). Compromise between the commitment perspective and the cost of
self-control leads to choice from the menu according to

maxf2F (s1)

�Z
S2

u (f) dp(� j s1) + � (s1)

Z
S2

u (f) dq(� j s1)
�
. (2.5)

Finally, de�ne p� on S1 � S2 by

p� (s1; s2) =
p(s2js1)+�(s1)q(s2js1)

1+�(s1)
p1 (s1) . (2.6)

Then choice from the menu is made as though maximizing expected utility using
the Bayesian update of p�, where p� can be thought of as a compromise prior and

p� (� j s1) = p(�js1)+�(s1)q(�js1)
1+�(s1)

: (2.7)
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The latter di¤ers from the Bayesian update of p to the extent that the conditionals
q (� j s1) and p (� j s1) di¤er.
For perspective, consider an alternative functional form for utility which sat-

is�es (2.1)-(2.2) with

U (f ; s1) =

Z
S2

u (f) dp(� j s1),

but where the speci�cation of temptation utility V (�; s1) is modi�ed so that
U (F (s1) ; s1) =�

max
f2F (s1)

Z
S2

[u (f) + v (f)] dp(� j s1)
�
� max

f 02F (s1)

Z
S2

v (f 0) dp(� j s1).

Here there is a single probability measure p but two utility indices u and v. The
functional form suggests an interpretation whereby temptation arises from changes
in taste rather than from changes in beliefs. Appendix B describes axiomatic foun-
dations for this model (augmented by suitable regularity conditions) that support
the noted interpretation and that, more generally, provide further perspective for
our model.
We discuss our central model further in Section 3.2 after describing its ax-

iomatic foundations. First, however, we describe some examples.

2.3. Examples of Updating Biases

This section demonstrates the richness of the model by showing how it can pro-
duce, through suitable speci�cations for p, q and �, a variety of updating biases,
including some that are analogous to biases discussed by psychologists in the con-
text of objective probabilities. Our claim here is not that we can accommodate all
or many of these with a single speci�cation, though future research will explore
that possibility. For now we content ourselves with suggesting the potential of our
model to provide a unifying and choice-theoretic framework.

Underreaction and Overreaction: Let

q (� j s1) = (1� � (s1)) p (� j s1) + � (s1) p2 (�) , (2.8)

where p2 denotes the S2-marginal of p and � (s1) � 1. If 0 � � (s1) � 1, then
q (� j s1) is a mixture of p (� j s1) and prior beliefs p2. Because p (� j s1) embodies
�the correct�combination of prior beliefs and responsiveness to data, and because
p2 gives no weight to data, the updating implied by (2.8) gives �too much�weight
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to prior beliefs and �too little�to observation. Prior beliefs exert undue in�uence,
relative to Bayesian updating, also if � (s1) < 0. To interpret this case, �x a state
s2 and rewrite (2.8) in the form

q (s2 j s1) = p (s2 j s1)� � (s1) (p (s2 j s1)� p2 (s2)).

If p (s2 j s1) � p2 (s2) > 0, then s1 is a strong positive signal for s2. In this case
the agent overreacts to such positive signals to a degree described by �� (s1).
Prior beliefs have an undue (negative) in�uence in that they are already taken
into account to a proper degree in p (s2 j s1).
Choice after realization of s1 is based on the Bayesian update of the compro-

mise prior, and hence, by (2.7), on the conditional measure

p� (� j s1) =
�
1� ��

1+�

�
p (� j s1) + ��

1+�
p2 (�) : (2.9)

Assume that � (�) and � (�) are constant. Evidently, p� (� j s1) is less sensitive to the
signal s1 than is p (� j s1) if � > 0 and more sensitive if � < 0. In particular, � < 0
can capture the temptation to panic in the face of the bad signal sb as discussed
in the introductory portfolio choice example. The larger is �, the greater is the
deviation from Bayesian updating, the larger is the temptation to panic and the
more likely is it that the agent will yield to the urge to leave stocks entirely.
The functional form specialization (2.8) is studied more closely and axioma-

tized in Section 3.3 under the heading Prior-Bias.

Con�rmatory Bias: Let q be given by (2.8) where � � 0. Then if 
 = ��
1+�

varies
suitably with the signal s1, the weight given by the compromise prior in (2.9) to
a particular piece of evidence is larger when the evidence supports prior beliefs.
Such a bias towards supportive evidence is reminiscent of the well-documented
con�rmatory bias; see Rabin and Schrag (1999) for references to the relevant
psychology literature and for an alternative model of the bias.
To illustrate, suppose that

S1 = fa; bg, S2 = fA;Bg, and p (a j A) = p (b j B) > 1
2
. (2.10)

Then B is more likely under prior beliefs (p2 (B) > 1
2
) if and only if p1 (b) > 1

2
.

Thus the desired bias is captured by the speci�cation


 (s1) = 
�
�

p1 (s1)

maxs012S1p1 (s
0
1)

�
, s1 = a; b,
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with 
� : [0; 1] �! [0; 1] decreasing. If the agent believes initially that B is more
likely than A, then the con�icting signal a will be underweighted.

Representativeness: Once again, adopt (2.10). The likelihood information given
there indicates that a is representative ofA and b is representative ofB. According
to the representativeness heuristic (Tversky and Kahneman (1974), for example),
people often weight such representativeness too heavily when judging conditional
probabilities of A given a and B given b. To capture the resulting updating bias,
take

q (A j a) = q (B j b) = 1.
Then the conditional of the compromise prior given by (2.7) satis�es

p� (A j a) > p (A j a) and p� (B j b) > p (B j b) .

Sample-Bias: Think of repeated trials of an experiment and take S1 = S2 = S.
Denote by �s (�) the measure assigning probability 1 to s and let

q (� j s) = (1� �) p (� j s) + � �s (�) ,

where � � 1 is a constant. When � > 0, the Bayesian update of p is adjusted
in the direction of the �empirical frequency�measure �s (�), implying a bias akin
to the hot-hand fallacy - the tendency to overpredict the continuation of recent
observations. If � < 0, then10

q (� j s) = p (� j s)� � (p (� j s)� �s (�)) ,

and the adjustment is proportional to (p (� j s)� �s (�)), as though expecting the
next realization to compensate for the discrepancy between p (� j s) and the most
recent observation. This is a form of negative correlation with past realizations
akin to the gambler�s fallacy.

3. FOUNDATIONS

3.1. Axioms for the General Model

Consider axioms for the preference order � de�ned on the set C of contingent
menus.
10To ensure that q (� j s) is a probability measure (hence non-negative), assume that

p (s j s) � ��
1�� for all s.
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Axiom 1 (Order). � is complete and transitive.

Axiom 2 (Continuity). The sets fF 2 C : F � Gg and fF 2 C : F � Gg are
closed.

The set (� (X))S2 of Anscombe-Aumann acts over S2 is a mixture space. Any
two menus of such acts, M and N , can be mixed according to

�M + (1� �)N = f�f + (1� �) g : f 2M; g 2 Ng :

Finally, for any two contingent menus F and G, de�ne the mixture statewise by

(�F + (1� �)G) (s1) = �F (s1) + (1� �)G (s1) , s1 2 S1.

We can now state the Independence Axiom for our setting.

Axiom 3 (Independence). For every 0 < � � 1, F � G i¤ �F + (1� �)F 0 �
�G+ (1� �)F 0.

A �rst stab at intuition for Independence is similar to that familiar from the
Anscombe-Aumann model and also to that o¤ered in [5, 10] for their versions of
the axiom. For completeness, we describe it brie�y. The mixture �F+(1� �)F 0 is
the contingent menu that delivers the set of acts �F (s1)+ (1� �)F 0 (s1) in state
s1. Consider instead the lottery over C, denoted ��F+(1� �)�F 0, that delivers F
with probability � and F 0 with probability (1� �). Supposing that the agent can
rank such lotteries, then the familiar intuition for the usual form of Independence
suggests that F � G i¤ � � F + (1� �) � F 0 � � � G + (1� �) � F 0. Thus the
intuition for our version of Independence is complete if we can justify indi¤erence
between � �F +(1� �) �F 0 and �F +(1� �)F 0. The di¤erence between them is
that under the former, randomization is completed immediately, at t = 0, while
for the latter, the timing is such that s1 is realized, (beliefs are updated), and then
the agent chooses an act from the convex combination �F (s1)+ (1� �)F 0 (s1) of
menus of acts. The latter corresponds also to the randomization with weight �
occurring after the interim choice of an act. Thus the desired indi¤erence amounts
to indi¤erence to the timing of resolution of uncertainty. (Dekel, Lipman and
Rustichini (2001, pp. 905-6) provide a normative justi�cation for indi¤erence to
timing that can be adapted to the present setting.)
However, there is more implicit in Independence. Consider the lottery � �

F + (1� �) � F 0. After the randomization is completed, the agent updates her
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beliefs over S1 � S2. Though the randomization is objectively independent of
events in S1 � S2, given that she changes her view of the world after making an
observation, the agent might change her beliefs over S1�S2. As a result, she might
prefer � � G + (1� �) � F 0 to � � F + (1� �) � F 0 even while preferring F to G.
Thus intuition for Independence assumes that, consistent with our agent not being
one who makes mistakes, she recognizes the objective fact that randomization is
unrelated to the state space. At the same time, she may, according to our model,
view the events E1 � S1 and E2 � S2 as subjectively independent according to
her initial (commitment) prior and yet change her beliefs about E2 after seeing
E1.
To rule out trivial cases, adopt:11

Axiom 4 (Nondegeneracy). There exist x; y in X for which x � y.

At this point we depart from Anscombe-Aumann. While their model can be
viewed as (implicitly) imposing a form of strategic rationality (see the discussion
following Theorem 3.1), in order to permit temptation and self-control we adopt a
counterpart of Gul and Pesendorfer�s Set-Betweenness axiom. To state the axiom,
de�ne the union F [G statewise, that is,

(F [G) (s1) = F (s1) [ G (s1) .

Axiom 5 (Set-Betweenness). For all states s1 and all menus F and G such
that F (s01) = G (s01) for all s

0
1 6= s1,

F � G =) F � F [G � G. (3.1)

Because F and G are identical in all states s01 6= s1, F � G means that
given s1 at the interim stage, the agent would rather have F (s1) than G (s1)
from which to choose after updating. Conditional preference over menus at any
s1 is derived from the subsequent choice of acts that is anticipated to follow
immediately, as in the GP model. Thus the motivation o¤ered by GP (2001, p.
1408) applies here. In particular, the hypothesis that temptation cannot increase
utility and that the utility cost of temptation depends only on the most tempting
alternative, leads to the agent�s conditional preference at the interim stage for
F (s1) over F (s1)[ G (s1) and preference for the latter over G (s1). But F , F [G
11x 2 X is identi�ed with the contingent menu that, in every state s1, yields the (singleton

menu comprised of the) lottery yielding x with probability 1.
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and G coincide in all states s01 6= s1 and thus, from the ex ante perspective, the
desired ranking of F [ G follows. The portfolio choice example (1.3) illustrates
the preceding.
For perspective, consider the stronger axiom that would impose (3.1) for all

contingent menus and not just for those that di¤er only in one state s1. It is easily
seen that this stronger axiom is not intuitive.12 For example, suppose that

F �
�
ffg if s1
ff 0g if s01

�
�
�
fgg if s1
fg0g if s01

�
� G,

where f and g0 are very attractive acts over S2 while f 0 and g are less attractive
but suitably tempting. Suppose that

ffg �s1 ff; gg �s1 fgg and

fg0g �s01 ff
0; g0g �s01 ff

0g,
where �s1 and �s01 denote preference at the interim stage given realization of s1
and s01 respectively. In particular, g is so tempting given s1 that it would be
chosen out of ff; gg, and f 0 is so tempting given s01 that it would be chosen out of
ff 0; g0g. Therefore, F [ G would lead ultimately to the choice of g given s1 and
f 0 given s01, the worst of both worlds, which suggests the ranking G � F [G.
The next axiom is the principal way in which temptation is connected to

changing beliefs. At the functional form level, the axiom is important in tracing
the di¤erence between the counterparts of the two GP functions U and V in (1.1)
to di¤erences in beliefs rather than to di¤erences in risk attitudes or utilities over
�nal outcomes (see Appendix B).
Identify any menu of lotteries L � �(X) with the contingent menu that yields

L for every s1. Thus rankings of the form L0 � L are well-de�ned.

Axiom 6 (Strategic Rationality for Lotteries (SRL)). For all menus of lot-
teries L0 and L, L0 � L =) L0 � L0 [ L.

To interpret, compare the prospect of receiving the menu of lotteries L0 in every
state s1 as opposed to receiving L in every state. After observing the realized s1,
she will choose a lottery from L0 or from L. Because the payo¤ to any lottery does

12The problem arises from comparisons of F and G such that the �s1 ranking of F (s1) and
G (s1) di¤ers depending on s1. Thus (3.1) is intuitive and indeed, is implied by the representa-
tion, hence by the set of axioms, if F (s1) �s1 G (s1) for all s1.
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not depend on the ultimate state s2, the expected payo¤ at the interim stage does
not depend on beliefs about S2. Therefore, if temptations arise only with a change
in beliefs, a form of strategic rationality should be valid for such comparisons.

The sequel requires a notion of nullity and some added notation that we now
introduce. For any act f over S2 and state s2 in S2, denote by f�s2 the restriction
of f to S2nfs2g. Say that (s1; s2) is null if F 0 � F for all F 0 and F satisfying both

F 0 (s01) = F (s
0
1) for all s01 6= s1, and�

f 0�s2 : f
0 2 F 0 (s1)

	
= ff�s2 : f 2 F (s1)g .

In words, (s1; s2) is null if any two contingent menus that �di¤er only on (s1; s2)�
are indi¤erent.
For any act f over S2, lottery ` and state s2, denote by `s2f the act over S2

that assigns ` if the realized state is s2 and f (s02) if the realized state is s
0
2 6= s2.

Similarly, for any menu M 2M (S2) and menu of lotteries L � �(X),

Ls2M � f`s2f : ` 2 L; f 2Mg : (3.2)

To illustrate this notation, consider the example in the introduction and let
S2 = fs02; s2g. Recall that div is an act over S2; denote by div (s02) the payo¤ to
the diversi�ed portfolio in state s02, and so on. The bond is a constant act, that is,
a lottery. Let ` be any other lottery, L = fbond; `g and M = fequity; divg. Then
Ls2M consists of the following four acts:13�

div(s02)
bond

�
;

�
div(s02)
`

�
;

�
equity(s02)
bond

�
;

�
equity(s02)
`

�
.

The signi�cance of the special structure for menus described in (3.2) is as
follows. Consider the agent after s1 is realized and facing the menu Ls2M of
acts over S2. In evaluating the menu, she anticipates updating to incorporate the
observed signal s1 and then choosing an act from the menu Ls2M . Her payo¤
is then determined by the chosen act and the realized state in S2. Though the
choice of an act is made before learning whether or not s2 is true, menus of the
above form permit the full range of contingent choices that would be possible if
choice could be made �ex post�after learning if s2 is true, (as is evident in the
portfolio example). Thus we can equally well think of choice as being made ex

13Acts are 2-vectors where the components give payo¤s in states s02 and s2 respectively.
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post and of the agent as having the following perspective: if s2 is realized, then
I will choose a lottery from L, and if s2 is not realized, then I will choose an act
from M . Similarly when evaluating L0s2M . Thus when comparing L0s2M and
Ls2M , the usual intuition for separability across disjoint events suggests that the
comparison reduces to the question �given state s2, would I rather choose a lottery
from L0 or from L?�
Finally, denote by (F�s1 ; Ls2M) the contingent menu that delivers F (s

0
1) if

s01 6= s1 and Ls2M otherwise. We can now state:

Axiom 7 (State Independence). For all non-null states (s1; s2),
L0 � L () (F�s1 ; L

0s2F (s1)) � (F�s1 ; Ls2F (s1)).

As in Anscombe-Aumann, a form of state independence is needed. We now
argue that the stated axiom expresses an intuitive form of state independence.
Consider the ranking of G0 = (F�s1 ; L

0s2M) and G = (F�s1 ; Ls2M). By the
intuition underlying the Sure-Thing-Principle, the agent compares them ex ante
by considering how she would rank the menus G0 (s01) and G (s

0
1) upon realization

of any state s01, that is, on the ranking of L
0s2F (s1) versus Ls2F (s1) after seeing

s1. Thus in light of what we have just seen about such comparisons, the ranking
of G0 and G can be understood in terms of the question �given the states s1 and
s2, would I rather choose a lottery from L0 or from L?�Suppose that choosing
from L0 is preferable. Since payo¤s to lotteries do not depend on states, if taste,
or risk aversion is also independent of the state, then L0 should be preferable to
L also where they are received unconditionally, that is, L0 � L. Moreover, the
converse should obtain as well. If (s1; s2) is null, then G0 is necessarily indi¤erent
to G and for reasons that have nothing to do with the speci�c menus L0 and L.
Thus the preceding intuition must be quali�ed in a way that is familiar from the
Anscombe-Aumann model.14

Finally, we adopt:

Axiom 8 (S1-Full Support). For every s1, there exist F 0 and F such that F 0 �
F and yet F 0 (s01) = F (s

0
1) for every s

0
1 6= s1.

If two contingent menus are indi¤erent whenever they agree on all states other
than s1, then the evaluation of any contingent menu does not depend on what it
assigns to s1, and s1 could simply be dropped. Thus there is no loss of generality
in assuming that no such states exist.

14Recall also Savage�s axiom P3.

19



3.2. Representation Result

The central result of the paper is the following axiomatization of utility over
contingent menus:

Theorem 3.1. � satis�es Order, Continuity, Independence, Nondegeneracy, Set-
Betweenness, Strategic Rationality for Lotteries, State Independence and S1-Full
Support if and only if it admits a representation of the form (2.1)-(2.3), including
the regularity conditions Reg1-Reg4.

The relation of the theorem to the (dynamic) Anscombe-Aumann model merits
emphasis. The latter is obtained if one strengthens Set-Betweenness to strategic
rationality, that is, if one requires that F � G =) F � F [ G whenever F and
G di¤er only in one state s1.
Because it imposes little structure on the relation between p and q (or equiv-

alently between p and the compromise prior p�), the model can accommodate
a range of updating biases (see the illustrations in Section 2.3). On the other
hand, some may view the above model as �too general�in that it permits beliefs
to change (q 6= p) even when S1 is a singleton and thus when there is no real
signal.15 This re�ects the fact, stated in the introduction, that the driving force
in our model is that beliefs may change with the passage of time. Nevertheless,
when the signal space S1 is nontrivial, this leads to a theory of updating.

The remainder of this section describes uniqueness properties of the above
representation and provides further interpretation.
Say that (u; p; q; �) represents � if it satis�es the conditions of the theorem.

Next we describe the uniqueness properties of such representing tuples under an
additional assumption. To simplify statement of the latter, de�ne the conditional
order �s1 onM (S2) by

M 0 �s1 M if 9F such that (F�s1 ;M 0) � (F�s1 ;M) .

Given the other axioms, �9F� is equivalent to �8F�and �s1 is represented by
U (�; s1) de�ned in (2.3). Though �s1 is de�ned as an ex ante ranking, we interpret
it also as the preference that would prevail at the interim stage after realization
of s1.
The following (elementary) lemma describes several equivalent statements of

the needed additional assumption.
15This case is ruled out if S1 = S2 = S, which is a common speci�cation (repeated experi-

ments).
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Lemma 3.2. Let � satisfy the axioms in the theorem and �x s1 in S1. Then the
following statements are equivalent:
(a) There exist menus M 0 and M such that M 0 �s1 M and M 0 �s1 M 0 [M .
(b) There exist f and g, Anscombe-Aumann acts over S2, such that

ffg �s1 ff; gg �s1 fgg . (3.3)

(c) There exists an Anscombe-Aumann act f over S2 and a lottery `, such that

ffg �s1 ff; `g �s1 f`g . (3.4)

(d) There exists a representing tuple (u; p; q; �) such that

� (s1) 6= 0 and q (� j s1) 6= p (� j s1) . (3.5)

Part (a) states that �s1 violates strategic rationality. Thus it excludes the
case where conditional utility U (�; s1) as de�ned in (2.3) takes the form

U (M ; s1) = max
f2M

Z
S2

u (f) dp(� j s1),

for any menuM of acts over S2, precisely as in the standard model with Bayesian
updating. In that sense, each of the conditions in the Lemma amounts to the
assumption of non-Bayesian updating given s1. In the terminology of GP (2001,
p. 1413), (b) states that the agent has self-control at ff; gg conditionally on s1.
Part (c) asserts the existence of such self-control where g is a lottery (constant act).
Finally, (d) provides the corresponding restrictions on the representing functional
form.

Corollary 3.3. Let (u; p; q; �) represent �. Then (u0; p0; q0; �0) also represents �
if and only if: (i) there exists (a; b) 2 R1++ � R1 such that

u0 = au+ b and p0 = p;

and (ii) for every s1, either

�0 (s1) (q
0 (� j s1)� p0 (� j s1)) = 0 = � (s1) (q (� j s1)� p (� j s1)) , (3.6)

or �0 (s1) = � (s1) and q0 (� j s1) = q (� j s1) : (3.7)
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The uniqueness properties of (u; p) are straightforward and expected. For (q; �),
the relevant uniqueness property depends on s1. One possibility is (3.6) which
states that both representations violate condition (3.5). In that case, interim
choice behavior is based on the Bayesian update of p. Otherwise, the strong
uniqueness statement (3.7) is valid for s1.
If conditions of the Lemma are satis�ed for every s1, then (u0; p0; q0; �0) and

(u; p; q; �) both represent � if and only if

u0 = au+ b and (p0; q0; �0) = (p; q; �) ,

for some a > 0 and b 2 R1. Then q and � (�), in addition to p, are unique
and hence meaningful components of the functional form. It makes sense then to
consider their behavioral meaning. For p, we have already observed that it is the
prior that guides choice under commitment. The meaning of � can be described
explicitly under conditions of the Lemma as we now show.16

Let x�� and x� be best and worst alternatives under commitment, that is, such
that

fx��g � fxg � fx�g for all x in X.

(They exist by Continuity and compactness of X.) Then also

fx��g �s1 M �s1 fx�g

for all states s1 and menus M . Normalizing u so that

u (x��) = 1 and u (x�) = 0,

then, as in vNM theory, utilities are directly observable as �mixture weights�. That
is, because each U (�; s1) is mixture linear, U (M ; s1) is the unique weight m such
that

mfx��g+ (1�m) fx�g �s1 M: (3.8)

Similarly for the special case U (f`g; s1) = u (`).
This permits isolation of the behavioral meaning of � (�), as described in the

following corollary.

Corollary 3.4. Suppose that �s1 satis�es conditions of the Lemma and that

ffg �s1 ff; `g �s1 f`g and ffg �s1 ff; `g �s1 f`g,
16The explication of q is straightforward but omitted for brevity.
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for some act f and lotteries ` and `0, with f`0g �s1 f`g. Then

� (s1) =
U (ff; `g; s1) � U (ff; `0g; s1)

u (`0)� u (`) . (3.9)

For lotteries ` and `0 as in the statement, compute that

U (ffg; s1) � U (ff; `g; s1) = � (s1)

�
u (`)�

Z
S2

u (f) dq (� j s1)
�
,

and similarly for `0. Expression (3.9) follows. It is important to note that each
utility level appearing on the right side of (3.9) is observable from behavior using
(3.8). Thus we have a closed-form and behaviorally meaningful expression for
� (s1). Because each mixture weight appearing in (3.8) is unit-free, so is the
expression given for � (s1).
For further interpretation of � (s1), Theorem 9 of GP(2001), translated to our

setting, yields that �s1 (satisfying conditions in the Lemma) exhibits less self-
control the larger is � (s1).17 Following GP, �s1 exhibits less self-control than
�0s1 if, for all menus M and N of acts over S2, M �s1 M [ N �s1 N implies
the same ranking in terms of �0s1 . In addition to this interpretation in terms of
comparative self-control, the expression (3.9) permits interpretation of � (s1) as an
absolute measure of self-control. If there is self-control at ff; `g as in (3.4), then
U (ffg; s1) � U (ff; `g; s1) is the utility cost of having ` available and exerting
self-control in order to choose f , where utility is measured in probabilities as in
(3.8). Thus � (s1) gives the rate at which this self-control cost increases as `
improves in the sense measured by u (`). In that sense, � (s1) is the marginal cost
of self-control in state s1.

3.3. Prior-Bias

Here we specialize the model by focussing on the weight given to prior beliefs versus
observations when updating. To state the new axioms, we require some added
notation and terminology. For any act f over S2, denote by ffg the contingent
menu that commits the agent to f in every state s1. Evidently, the evaluation of
any such prospect re�ects marginal beliefs about S2 held at time 0, that is, the
agent�s prior on S2. Say that s1 is a neutral signal if, for all acts over S2,18

ffg �s1 fgg () ffg � fgg.
17Theorem 9 seems misstated - the correct statement should �x the parameter 
 to equal 1.

In their (2004) paper, the authors refer to this corrected version of Theorem 9.
18The conditional order �s1 is de�ned as in the last section.
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Given our representation, s1 is a neutral signal if and only if p (� j s1) = p2 (�).

Axiom 9 (Prior-Bias). Let s1 2 S1 and let f and g be any acts over S2 satis-
fying

ffg �s1 fgg.
Then ffg �s1 ff; gg if either s1 is a neutral signal or if ffg � fgg.

To interpret, suppose that holding �xed what the contingent menu gives in
states other than s1, committing to f in state s1 is strictly preferred to committing
to g in state s1. By Set-Betweenness, ffg �s1 ff; gg, where strict preference
indicates the expectation that g would be tempting in state s1, and hence that
updating would lead to a change in beliefs from those currently held. Prior-Bias
rules this out if s1 is a neutral signal. For any non-neutral s1, g can be tempting
given s1 only if ffg � fgg, that is, only if prior beliefs di¤er on the two acts. That
the presence of temptation conditionally on s1 depends not only on how f and g
are ranked conditionally but also on how attractive they were prior to realization
of s1, indicates excessive in�uence of prior beliefs at the updating stage.
Prior-Bias permits prior beliefs to unduly in�uence updating but does not

specify the direction of such in�uence. Put another way, what happens if ffg and
fgg are not indi¤erent? We consider two alternative strengthenings of the axiom
that provide di¤erent answers.

Axiom 10 (Positive Prior-Bias). Let s1 2 S1 and let f and g be any acts over
S2 satisfying

ffg �s1 fgg.
Then ffg �s1 ff; gg if either s1 is a neutral signal or if ffg � fgg.

According to this axiom, g can be tempting conditionally on a non-neutral s1
only if it was strictly more attractive according to prior beliefs on S2. Intuitively,
this is because prior beliefs are overweighted.
An alternative strengthening of Prior-Bias is:

Axiom 11 (Negative Prior-Bias). Let s1 2 S1 and let f and g be any acts
over S2 satisfying

ffg �s1 fgg.
Then ffg �s1 ff; gg if either s1 is a neutral signal or if ffg � fgg.
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Suppose that while g is (weakly) preferred according to prior beliefs on S2, the
(necessarily non-neutral) signal s1 reverses the ranking in favor of f . The agent
modeled by this axiom overweights such a signal (and she knows this about herself
ex ante). Thus she is not tempted by g after seeing s1 (or when anticipating its
realization ex ante).

Corollary 3.5. Suppose that � satis�es the axioms in Theorem 3.1. Then �
satis�es also Prior-Bias (Positive Prior-Bias or Negative Prior-Bias, respectively)
if and only if it admits a representation (2.1)-(2.3) where in addition: for each s1,
either � (s1) = 0, or � (s1) > 0 and

q (� j s1) = (1� � (s1)) p (� j s1) + � (s1) p2 (�) , (3.10)

with � (s1) � 1 (0 < � (s1) � 1, � (s1) � 0, respectively).

Prior-Bias leads to a concrete relation between the �temptation prior" q and
the commitment prior p: the Bayesian update of q is a linear combination of
the Bayesian update of p and prior marginal beliefs p2 (�). As a result the agent
deviates from Bayesian updating by attaching a (positive or negative) additional
weight to prior beliefs over S2, where this additional weight is signed in the natural
direction by Positive or Negative Prior-Bias. This functional form was interpreted
further in Section 2.3. Note �nally that under Prior-Bias, q (� j s1) = p (� j s1) and
updating is standard if S1 is a singleton, or more generally, if p is a product
measure.

4. CONCLUDING REMARKS

The connection of our model to updating relies on the interpretation of the func-
tional form (2.5) as describing interim choice at time 1. This interpretation is
suggested by our formal model, but Theorem 3.1 deals only with the ex ante
choice between contingent menus and not with the interim choice of acts from
menus. A similar issue arises in the GP model and their solution, using suitably
extended preferences, can be adapted here. Note that foundations provided in
this way are subject to the di¢ culty pointed out in GP (2001, p. 1415), namely
the lack of a revealed preference basis for extended preferences.
One might expect a given individual to update di¤erently in di¤erent situa-

tions. If by �situation�one means �state space�, then the present model is consis-
tent with such variation because it is restricted to a given state space. However,
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it has nothing to say about how behavior is connected across state spaces. Al-
ternatively, one might expect that even given the state space, an individual may
exhibit di¤erent updating biases depending on the choice problem. This calls for
a generalization that would permit updating behavior to depend on the menu
available at the interim stage.
Conclude with one application of the model. Our non-Bayesian agent violates

the law of iterated expectations, because she uses the compromise measure p�

from (2.6) to guide choice at t = 1 but she uses p for choice at t = 0. Thus there
exist acts f : S2 �! X such that ffg � f�fg at time 0 and yet such that at each
s1, the agent would strictly prefer to choose �f out of ff;�fg. This amounts to
a violation of the �sure-thing principle for action rules�, a property that has been
identi�ed as central to no-trade theorems, (see Geanakoplos (1994), for example).
It is not surprising, therefore, that two such agents may agree to take opposite
sides of a bet at every state s1 even if they have common commitment priors and
all the preceding is common knowledge. What may be not so obvious, however,
is that common knowledge agreement to bet can arise even though agents have
stable (unchanging) preferences, albeit over contingent menus rather than on the
usual domain of acts. Future research will explore more deeply the message of
this example - that trade may result not only from heterogeneity in prior beliefs
or in information, but also from heterogeneity in the way that agents update in
response to information.

A. APPENDIX: Proofs of Main Results

Proof of Theorem 3.1: Necessity: Set-Betweenness is satis�ed because each U (�; s1)
de�ned in (2.3) has the GP form. Verify State Independence; veri�cation of the
other axioms is immediate.
Claim 1: p (s1; s2) > 0 =) (s1; s2) is non-null. Take any F with F (s1) = Ls2M
and de�ne F 0 by

F 0 (s01) = F (s
0
1) if s

0
1 6= s1 and F 0 (s1) = L0s2M .

Compute that U (Ls2M ; s1) =

max
f2Ls2M

�Z
S2

u (f) dp(� j s1) + � (s1)

Z
S2

u (f) dq(� j s1)
�

� max
f 02Ls2M

� (s1)

Z
S2

u (f 0) dq(� j s1)
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= max
f2M

�Z
S2nfs2g

u (f) dp(� j s1) + � (s1)

Z
S2nfs2g

u (f) dq(� j s1)
�

� max
f 02M

� (s1)

Z
S2nfs2g

u (f 0) dq(� j s1)

+ max
`2L

fu (`) p(s2 j s1) + � (s1) u (`) q(s2 j s1)g �max
`02L

� (s1)u (`
0) q(s2 j s1).

It follows that

U (F 0)� U (F ) = p1 (s1)
�
p(s2 j s1) max

`2L0
u (`)� p(s2 j s1) max

`2L
u (`)

�

= p (s1; s2)

�
max
`2L0

u (`)�max
`2L

u (`)

�
.

Because u (�) is not constant, we can choose L0 and L so that the latter expression
is nonzero. This proves that (s1; s2) is non-null.

Claim 2: p (s1; s2) = 0 =) (s1; s2) is null. Compute that U (F (s1) ; s1) =

max
f2F (s1)

�Z
S2

u (f) dp(� j s1) + � (s1)

Z
S2

u (f) dq(� j s1)
�

� max
f 02F (s1)

� (s1)

Z
S2

u (f 0) dq(� j s1).

Because q << p, the right hand side does not depend on ff (s2) : f 2 F (s1)g. In
other words, �

f 0�s2 : f
0 2 F 0 (s1)

	
= ff�s2 : f : f 2 F (s1)g =)

U (F 0 (s1) ; s1) = U (F (s1) ; s1) .
It follows that (s1; s2) is null.

Return to State Independence. For any menus of lotteries,

L0 � L() max
`2L0

u (`) � max
`2L

u (`) :

Also, U (F�s1 ; L0s2F (s1))� U (F�s1 ; Ls2F (s1)) = p (s1; s2) [max`2L0 u (`)�max`2L u (`)],
by the calculations above. Thus State Independence follows from the preceding
claims.
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Su¢ ciency: We claim that because � satis�es Order, Continuity and Indepen-
dence on C, there exists a representation for � of the form

U (F ) = �s12S1 U (F (s1) ; s1) , (A.1)

where each U (�; s1) is continuous and mixture linear on M (S2). Intuition for
this claim is provided by the similarity with the Anscombe-Aumann theorem.
The latter deals with acts mapping a state space into �(X), while here each
F maps states into M (S2), which shares with �(X) the existence of a mixing
operation. However, M (S2) is not a mixture space and thus the analogy is not
perfect.19 To �ll this gap, denote by coF the contingent menu taking s1 into
the closed convex hull of F (s1). The vNM axioms imply that coF and F are
indi¤erent (see Lemma 1 in Dekel, Lipman and Rustichini (2001)). Moreover, the
subdomain ofM (S2) consisting of closed and convex menus is a mixture space,
and thus standard arguments apply to deliver the desired representation there.
Finally, extend the representation using the noted indi¤erence between coF and
F .
It follows that for each s1, � induces the conditional order �s1 onM (S2) via

M 0 �s1 M if (F�s1 ;M
0) � (F�s1 ;M) for some F ,

and that �s1 is represented by U (�; s1). By Set-Betweenness, �s1 satis�es the GP
axioms suitably translated to our setting; that is, GP deal with menus of lotteries,
while we have menus of Anscombe-Aumann acts over S2. With this translation,
their proof is valid for our setting and delivers:20

U (M ; s1) = max
f2M

�
U (f ; s1) + V (f ; s1)�max

f 02M
V (f 0; s1)

�
, (A.2)

where U (�; s1) and V (�; s1) are mixture linear (and continuous). Actually, the
preceding equality is valid only up to ordinal equivalence, but both sides are
mixture linear and so they must be cardinally equivalent. Thus absolute equality
may be assumed wlog.
Both U (�; s1) and V (�; s1), utility functions de�ned on the domain (� (X))S2

of Anscombe-Aumann acts, satisfy the basic mixture space axioms there. Thus,
by Kreps (1988, Propn. 7.4) and Continuity, we can write

U (f ; s1) = �s22S2 u (f (s2) ; s1; s2) , V (f ; s1) = �s22S2 v (f (s2) ; s1; s2) , (A.3)

19It violates the property �
�
�0M +

�
1� �0

�
N
�
+ (1� �) N = ��0M +

�
1� ��0

�
N .

20In fact, Kopylov (2005) has extended the GP theorem to a domain of menus of any compact
metric mixture space where the mixture operation is continuous.
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for all f : S2 �! �(X). (Below we often abbreviate (s1; s2) by s.) Each u (�; s)
and v (�; s) is mixture linear and continuous.

Lemma A.1. Assume Order, State Independence and Nondegeneracy. Then:
(a) For all (s1; s2) and non-null (s01; s

0
2), contingent menus F , menus M of acts

over S2 and menus L0 and L of lotteries,

L0s02M �s01 Ls
0
2M =) L0s2M �s1 Ls2M .

(b) For all (s1; s2) and contingent menus F , if

L0s2F (s1) �s1 Ls2F (s1)

for all menus of lotteries L0 and L, then (s1; s2) is null.

Proof. (a) Since (s01; s
0
2) is non-null, State Independence applied twice implies

L0s02M �s01 Ls
0
2M =) L0 � L =) L0s2M �s1 Ls2M .

(b) Under the stated hypothesis, if (s1; s2) were non-null, then Order and State
Independence would imply L0 � L for all L0 and L, contradicting Nondegeneracy.
Therefore, (s1; s2) is null.

Take F 2 A, that is, let F (s1) be a singleton for every s1. Recall that A is
isomorphic to (� (X))S1�S2, the set of Anscombe-Aumann acts over S1�S2. The
preceding three displayed equations imply that � restricted to A is represented
by bU , where

bU � bf� = �s1;s2 u
� bf (s1; s2) ; s1; s2� , for all bf 2 (� (X))S1�S2 .

By part (a) of the Lemma and Nondegeneracy, the order represented by bU (�)
satis�es all the Anscombe-Aumann axioms. Thus (by Kreps (1988, Theorem
7.17), for example) bU has the SEU form

bU � bf� = �s2S1�S2 p (s) u
� bf (s)� ,

for a suitable nonconstant and mixture linear u and probability measure p on
S1 � S2. (Equality is modulo ordinal equivalence, but the latter quali�cation can
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be dropped because bU (�) is mixture linear, forcing the ordinal transformation to
be cardinal.) Wlog therefore,

u (�; s1; s2) = p (s1; s2) u (�)

and we can re�ne (A.3) and write

U (f ; s1) = �s22S2 p (s1; s2) u (f (s2)) . (A.4)

The next step is to show that on X,

v (�; s) = asp (s)u (�) + bs, where as � 0. (A.5)

To do so, note that for any s = (s1; s2) and menus M 2 M (S2) and L0; L �
�(X),

L0s2M �s1 Ls2M () U (L0s2M ; s1) � U (Ls2M ; s1) ,
where

U (Ls2M ; s1) = max
f2M; `2L

fU (`s2f ; s1) + V (`s2f ; s1)g

� max
f 02M; `02L

V (`0s2f
0; s1) , and hence

U (Ls2M ; s1) = max
`2L

�
p (s) u (`) + v (`; s) �max

`02L
v (`0; s)

�
+ �(M; s) , (A.6)

where the �nal term is independent of L and can be ignored for present purposes.
We claim that the ranking of menus of lotteries represented by L 7�! U (Ls2M ; s1),

or equivalently by

L 7�! max
`2L

�
p (s) u (`) + v (`; s) �max

`02L
v (`0; s)

�
,

is strategically rational, that is,

L0s2M �s1 Ls2M =) L0s2M �s1 (L0 [ L) s2M .

The indi¤erence on the RHS is trivially true if (s1; s2) is null. Otherwise, the im-
plication follows from State Independence and Strategic Rationality for Lotteries.

Case 1: Suppose p (s) > 0. Then p (s)u (�) is nonconstant. Hence (A.5) follows as
in GP(2001, p. 1414) from the just noted strategic rationality.
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Case 2: Suppose that p (s) = 0. Then by part (b) of the Lemma, s = (s1; s2) is
null, and by the de�nition of nullity, the utility of any F is independent of what
it assigns to the state s. Thus any speci�cation for v(�; s) is consistent with a
representation for �. In particular, we can take v (�; s) = 0 wlog and (A.5) is valid
with as = 0.

From (A.3)-(A.5), deduce that

U (M ; s1) = max
f2M

f�s2 p (s1; s2)u (f (s2)) + �s2as1;s2p (s1; s2)u (f (s2))g

�max
f 02M

f�s2as1;s2p (s1; s2)u (f 0 (s2))g .

Denote by p1 the S1-marginal of p; it is everywhere positive by (A.3), (A.5) and
S1-Full Support. Let

� (s1) =
�s2as1;s2p (s1; s2)

p1 (s1)
,

and de�ne the measure q so that its S1-marginal equals p1, and

q (s2 j s1) =
(

as1;s2p(s2js1)
�(s1)

if � (s1) > 0
p (s2 j s1) otherwise.

Then

U (M ; s1) = p1 (s1) max
f2M

f�s2 p (s2 j s1)u (f (s2)) + � (s1) �s2q (s2 j s1)u (f (s2))g

�p1 (s1) max
f 02M

f� (s1) �s2q (s2 j s1)u (f 0 (s2))g .

With (A.1), this yields the desired representation (2.1)-(2.2).

Proof of Corollary 3.3: If (u; p; q; �) represents � and if (u0; p0; q0; �0) is related as
stated, then clearly it also represents�. For the converse, suppose that both tuples
represent �. Then the subjective expected utility functions de�ned by (u; p) and
(u0; p0) both represent preference on the subset A � C of Anscombe-Aumann acts
over S1�S2. By the well-known uniqueness properties of the Anscombe-Aumann
theorem,

u0 = au+ b and p0 = p: (A.7)
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By Lemma 3.2, (u0; p0; q0; �0) violates (3.5) i¤ (u; p; q; �) does, in which case
(3.6) is valid. Suppose that (u; p; q; �) satis�es (3.5). The latter implies that
U (�; s1) is regular in the sense of GP (2001, p. 1414). (Here and below we refer to
the translation of GP to our setup, whereby their menus of lotteries are replaced
by menus of Anscombe-Aumann acts over S2.) Thus their Theorem 4 implies that

V 0 (�; s1) = As1V (�; s1) + BV; s1 and (A.8)

U 0 (�; s1) = As1U (�; s1) + BU; s1, (A.9)

where

V (f ; s1) = � (s1)

Z
S2

u (f) dq(� j s1), f 2 (� (X))S2 , (A.10)

and V 0; U 0; V and U are de�ned similarly. Deduce from (A.7) and (A.9) that
As1 = a. Equation (A.8) implies, again by uniqueness properties of the Anscombe-
Aumann model, that q0 (� j s1) = q (� j s1). Substitution from (A.10) implies fur-
ther that

�0 (s1)

Z
S2

(au (f) + b) dq(� j s1) = a� (s1)
Z
S2

u (f) dq(� j s1) + BV; s1,

for all f 2 (� (X))S2, which implies that �0 (s1) = � (s1).

Proof of Corollary 3.5: The necessity assertions are obvious. Prove su¢ ciency of
Prior-Bias; the arguments for Positive and Negative Prior-Bias are similar. Given
our representation, if � (s1) > 0, then Prior-Bias implies:

if
Z
(u (f)� u (g)) dp (� j s1) > 0 and

Z
(u (f)� u (g)) dp2 (�) = 0,

then
Z
(u (f)� u (g)) dq (� j s1) � 0.

By Motzkin�s Theorem of the Alternative (see Mangasarian (1969, p. 34),

ypp (� j s1)� yqq (� j s1) + y2p2 (�) = 0 (A.11)

for some scalars yp � 0; yq � 0 and y2, with yp + yq > 0.
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Case 1 (yq > 0): Solve (A.11) for q (� j s1) and deduce (3.10).
Case 2 (yq = 0): Then necessarily p (� j s1) = p2 (�). Thus s1 is a neutral signal
and Prior-Bias implies that ffg �s1 ff; gg. In fact, the corresponding indi¤erence
holds for any pair of acts f 0 and g0 for which ff 0g �s1 fg0g, that is,Z

(u (f 0)� u (g0)) dp (� j s1) > 0 =)
Z
(u (f 0)� u (g0)) dq (� j s1) � 0.

Conclude that q (� j s1) = p (� j s1).

B. APPENDIX: Changing Risk Aversion

This appendix elaborates on the model of changing risk preference mentioned in
Section 2.2. More precisely, consider the utility function on C given by

U (F ) =
Z
S1

U (F (s1) ; s1) dp1, F 2 C, (B.1)

and U (F (s1) ; s1) =�
max
f2F (s1)

Z
S2

[u (f) + v (f)] dp(� j s1)
�
� max

f 02F (s1)

Z
S2

v (f 0) dp(� j s1), (B.2)

where:

Reg1* u; v : � (X) �! R1 are mixture linear and continuous.

Reg2* each p (� j s1) is a probability measure on S2.

Reg3* There exist lotteries `0 and ` such that v (`0) < v (`) and u (`0) + v (`0) >
u (`) + v (`).

Reg4* u cannot be expressed as the linear transformation u = av+ b, where a < 0.

Note that these conditions rule out the standard Bayesian model (say if v is
constant or a positive a¢ ne transformation of u) and that the above model is
disjoint from our central model. Turn to the axioms that underlie them.
Adopt all previous axioms with the exception of Strategic Rationality for Lot-

teries (SRL). To state its replacement, adapt terminology from GP. Say that� has

33



self-control for lotteries if L0 � L0 [ L � L for some menus of lotteries. Consider
next:21

Axiom 12 (Regular Self-Control for Lotteries (RSCL)). � has self-control
for lotteries and there exists L such that: (i) L � L00 for all subsets L00 of L, and
(ii) L � f`g for some ` in L.

To interpret the axiom, compare it with SRL. The latter says that where the
choice is between (unconditional) menus of lotteries, then there is no temptation,
while the new axiom says the opposite - that temptation sometimes occurs even
for such choices. Thus while SRL implies that temptation arises only where beliefs
are relevant for choice, RSCL implies that it arises even where only risk attitude
is relevant for choice. This explains why substituting RSCL for SRL leads to the
following alternative to Theorem 3.1.

Theorem B.1. � satis�es Order, Continuity, Independence, Nondegeneracy, Set-
Betweenness, Regular Self-Control for Lotteries, State Independence and S1-Full
Support if and only if it admits a representation of the form (B.1)-(B.2), including
the regularity conditions Reg1*-Reg4*.

Though Theorems 3.1 and B.1 are disjoint, they do not exhaust the class of
preferences satisfying all their common axioms. As an example, take (B.1) and
U (F (s1) ; s1) =�
max
f2F (s1)

Z
S2

u (f) dp(� j s1)� �
Z
S2

u (f) dq(� j s1)
�
� max
f 02F (s1)

(��)
Z
S2

u (f) dq(� j s1)

=

�
max
f2F (s1)

Z
S2

u (f) dp(� j s1)� �
Z
S2

u (f) dq(� j s1)
�
+ min
f 02F (s1)

�

Z
S2

u (f) dq(� j s1),

where q(� j s1) << p(� j s1) and 1 < �. Though all other axioms are satis�ed,
SRL and RSCL are violated and thus the functional form does not �t into either
model. The interpretation is that the underlying �change in preference�cannot
be attributed to a change in only one of taste or beliefs.22

21GP (2001, p. 1414) refer to (i)-(ii) as the absence of maximal preference for commitment.
They also de�ne regularity. The connection is that, given that � has self-control, then � has
regular self-control i¤ it is regular.
22The obvious funtional form based on arbitrary pairs (u; p) and (v; q) would also support

such a statement, but it would violate State Independence.
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Proof. Necessity: RSCL is implied by Reg3*, Reg4* and the observations in GP
(p. 1414). The other axioms are readily veri�ed.

Su¢ ciency: As in the proof of Theorem 3.1, we have (A.1)-(A.4). Our objective
is to prove that wlog

v (�; s1; s2) = p (s1; s2) bv (�) for all (s1; s2) . (B.3)

Conditions Reg1*-Reg4* would then follow; for example, Reg4* would follow from
Regular Self-Control along the lines of the observations in GP (2001, p. 1414).
De�ne the induced order �(s1;s2) on menus of lotteries by

L0 �(s1;s2) L if L0s2M �s1 Ls2M for some M .

Then given any two non-null states (s1; s2) and (s01; s
0
2), State Independence implies

that
L0 �(s1;s2) L i¤ L0 � L i¤ L0 �(s01;s02) L.

Thus �(s1;s2) is represented by both

W (L; s1; s2) = max`2Lfp (s1; s2)u (`) + v (`; s1; s2)g �max`2Lv (`; s1; s2) ,

and by the corresponding function W (�; s01; s02). Moreover, �(s1;s2) satis�es the
conditions in GP(2001, Theorem 4). Thus

p (s1; s2)u (�) = ap (s01; s02)u (�) + bu, v (�; s1; s2) = av (�; s01; s02) + bv, (B.4)

for some common a > 0 (that depends on the two states). From the �rst equation,

(p (s1; s2)� ap (s01; s02)) u (�) is constant,

which implies that
p (s1; s2)� ap (s01; s02) = 0 = bu.

Lemma A.1 implies that p (s01; s
0
2) > 0 because (s

0
1; s

0
2) is non-null. Therefore,

v (�; s1; s2) = p(s1;s2)

p(s01;s02)
v (�; s01; s02) , (B.5)

where wlog bv has been set equal to zero. Thus
v(�;s1;s2)
p(s1;s2)

is invariant across non-null
states. Denote the common function by bv (�), which yields (B.3) for all non-null
states (s1; s2).
Finally, if (s1; s2) is null, then: (i) p (s1; s2) = 0, and (ii) the utility of any F is

independent of what it assigns to (s1; s2). The latter implies that any speci�cation
for v(�; s1; s2) is consistent with a representation for �. In particular, we can take
v (�; s1; s2) = 0 consistent with (B.3).
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