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Abstract

We identify previously unnoticed ways in which agents can strate-
gically distort allocation rules, by affecting the set of “active” agents.
(i) An agent withdraws with his endowment. (ii) He gives control of
his endowment to someone else and withdraws. (iii) He invites some-
one in and let him use some of his endowment. (iv) He pre-delivers
to some other agent the net trade that the rule would assign to that
second agent if that second agent had participated. In (i) and (ii),
he and his co-conspirator may end up controlling resources that allow
them to reach higher welfare levels than they otherwise would. In (iii)
and (iv), he may end up with a bundle that he prefers to the one
he would have been assigned had he not engaged in the manipula-
tion. We show that (i) the Walrasian rule is not “withdrawing-proof”,
nor “endowments-merging–proof, nor “endowments-splitting–proof”,
but that it is “pre-delivery–proof”, and that (ii) canonical selections
from the egalitarian-equivalence-in-trades solutions satisfy none of the
properties.
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1 Introduction

We identify previously unnoticed ways in which a group of agents can distort
allocation rules to their advantage. In each case, the manipulation has the
effect of changing the set of “active” agents. We state axioms expressing the
robustness of rules to each of these manipulations. We examine two central
rules, and ask whether they satisfy these robustness requirements.

We consider two classes of economies that differ in the manner in which
ownership rights over resources are specified. In a standard “economy with
private endowments”, each agent is endowed with a bundle of goods and
allocation rules are designed to redistribute these bundles. In a “fair division
problem”, there is a social endowment of resources over which agents are
understood to have equal rights, and rules are designed to distribute these
resources in a way that “best” reflects these rights.

The first possibility of manipulation that we study in economies with pri-
vate endowments is as follows: instead of participating, an agent withdraws
with his endowment; the rule is applied without him; he then gets together
with one of the agents who did participate. The two of them may end up
controlling resources (the sum of the assignment to the agent who stayed
and of the endowment of the agent who withdrew) that, when appropriately
divided between them, make each of them at least as well off as he would
have been without the manipulation, and at least one of them better off.

Two scenarios are possible in the context of the problem of fair division.
First, when an agent withdraws, he may relinquish his rights on the social
endowment altogether; as before, the rule is applied without him; some agent
who stays may be assigned a bundle that can be redivided between the two
of them so as to make each of them at least as well off as he would have been
without the manipulation, and at least one of them better off.

Alternatively, the agent who withdraws leaves with an equal share of the
social endowment; the rule is applied without him; the sum of the assignment
to some agent who stays and the bundle taken with him by the agent who
withdrew, an equal share of the social endowment, may be divided between
the two of them so as to make each of them at least as well off as he would
have been without the manipulation, and at least one of them better off.

The other possibilities of manipulation that we examine reflect other
terms under which an agent may withdraw. Returning to economies in which
agents are individually endowed, two agents can merge their endowments,
and one of them withdraw; the rule is applied without this second agent; the
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agent who stays may be assigned a bundle that can be divided between the
two of them in such a way that each of them is at least as well off as he would
have been without the manipulation, and at least one of them is better off.

Symmetrically, an agent may split his endowment with some outsider—
some agent with no endowment; the rule is applied and the guest then trans-
fers his assignment to the agent who invited him in; the first agent may prefer
his final assignment to what he would have received without the manipula-
tion.

Finally, an agent may make a pre-delivery to some other agent of the trade
the latter would be assigned if he participated; the rule is applied without
the second agent; at his final assignment, the first agent may be better off
that he would have been without the manipulation.

We examine the robustness to these various types of manipulation of two
canonical selections from the correspondences that arguably are the most
important in the literature on resource allocation in private good economies.
The first such correspondence selects, for each economy, the allocations such
that each agent finds his assignment at least as desirable as his endowment,
that is, allocations that meet the “endowments lower bound”. The other
three are inspired by the literature on fairness. An allocation meets the
“equal division lower bound” if each agent finds his assignment at least as
desirable as an equal share of the social endowment. It is envy-free-in-trades
(Foley, 1967; Schmeidler and Vind, 1972) if no agent prefers the net trade (the
difference between final consumption and endowment) assigned to any other
agent to the net trade assigned to him. Finally, it is “egalitarian-equivalence
in trades” (a definition inspired by Pazner and Schmeidler, 1978) if there
is a “reference trade vector” such that each agent finds his assigned trade
indifferent to this reference vector.

The first of the two rules on which we focus is the Walrasian rule, or,
when the issue is fair division, the equal-division Walrasian rule (defined
by first specifying as a private endowment for each agent an equal share of
the social endowment, and then applying the standard Walrasian definition).
The Walrasian rule meets the endowments lower bound and it delivers envy-
free trades. When operated from equal division, it meets the equal-division
lower bound and it delivers envy-free allocations. Except when pre-delivery
is concerned, the Walrasian rule is not robust. We establish these facts on
domains of economies with homothetic preferences, and most of them also
hold on domain of economies with quasi-linear preferences. The positive an-
swer, concerning immunity to pre-delivery, holds under general assumptions
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on preferences of continuity, monotonicity, and convexity.
The most prominent selections from the egalitarian-equivalent-in-trades

correspondence are defined by requiring that the reference trade be propor-
tional to a particular vector, fixed once and for all, independently of prefer-
ences. Their prominence stems from the fact that they satisfy a wide array
of relational fairness properties. It is therefore a disappointment that these
rules satisfy none of the properties we formulate, as we show.

Section 2 specifies the model and establishes notation. Sections 3 and 4
are concerned with manipulation through withdrawal in economies with pri-
vate endowments and in economies with a social endowment respectively.
Sections 5 and 6 are concerned with manipulation through merging and
splitting endowments respectively. Section 7 is concerned with manipula-
tion through pre-delivery. Section 8 relates the current paper to existing
literature and raises open questions.

2 The model

Since the types of manipulation we consider lead to variations in the popu-
lation of “active” agents, allocation rules have to be defined so as to allow
such variations. We model this possibility by specifying an infinite set of
“potential” agents, indexed by the natural numbers N. (In the proofs of our
negative results, it suffices to consider economies with either 2 or 3 agents.)
To compose an economy, a finite number of these agents are drawn from
this set and their preferences specified, and resources are made available to
them. Let N be the class of finite subsets of N, with generic element N .
There is a finite number ℓ of goods. Each agent i ∈ N is equipped with a
preference relation Ri defined on Rℓ

+. This relation belongs to some class R.
We specify resource endowments in two alternative ways. In one case, each
agent i ∈ N is endowed with his own vector of resources ωi ∈ Rℓ

+, his en-
dowment. Given N ∈ N , an economy with agent set N is then a pair
(R,ω), where R ≡ (Ri)i∈N ∈ RN is the profile of their preference relations
and ω ≡ (ωi)i∈N ∈ RℓN

+ is the profile of their individual endowments.1 Let
EN be our generic notation for a domain of economies with agent set N , and
E ≡

∪
N∈N EN .

1We use the notation RN to designate the cross-product of |N | copies of R indexed
by the members of N . The notation RℓN

+ should be understood in a similar way, as the
cross-product of |N | copies of Rℓ

+ indexed by the members of N .
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We will be particularly interested in three domains of economies. Prefer-
ences are classical if they are continuous, monotone, and convex. They are
homothetic if, whenever two bundles are indifferent, so are the two bun-
dles obtained by multiplying them by the same positive scalar. They are
quasi-linear if whenever two bundles are indifferent, so are the two bundles
obtained by adding to each of them the same quantity of good 1. Let Rcl,
Rhom, and Rcl be the classes of classical, homothetic, and quasi-linear pref-
erences respectively. Our first domain is the domain EN

cl of economies with
classical preferences; our second domain is the subdomain EN

hom of economies
in which preferences are homothetic and strictly convex; our third domain
is the subdomain EN

ql of economies in which preferences are quasi-linear and
strictly convex.

We also consider the problem of allocating a social endowment of re-
sources over which all agents are understood to have equal rights. A fair
division problem with agent set N is a pair (R,Ω) ∈ RN × Rℓ

+, where
as before, R is the profile of their preference relations, and Ω ∈ Rℓ

+ is the
social endowment. Let FN be our generic notation for a domain of fair di-
vision problems with agent set N , and F ≡

∪
N∈N FN . We define in the

obvious way the domains FN
cl , FN

hom, and FN
ql of classical, homothetic, and

quasi-linear fair division problems with agent set N and their extensions to
arbitrary populations, Fcl, Fhom, and Fql.

An allocation for (R,ω) ∈ EN is a list {xi}i∈N ∈ RℓN
+ such that∑

xi =
∑

ωi. An allocation for (R,Ω) ∈ FN is a list {xi}i∈N ∈ RℓN
+ such

that
∑

xi = Ω. Let X(R,ω) denote the set of allocations of (R,ω) and
X(R,Ω) that of (R,Ω). A solution defined on some domain E assigns
to each N ∈ N and each e ≡ (R,ω) ∈ EN , a non-empty subset of its set of
feasible allocations. A solution defined on some domain F is defined in
a similar way. A rule is an essentially single-valued solution. Our generic
notation for a rule is the letter φ.

The Walrasian solution, denoted W , associates with each N ∈ N
and each (R,ω) ∈ EN , the set of allocations x ∈ X(R,ω) for which there
is p ∈ ∆ℓ−1 such that for each i ∈ N , pxi ≤ pωi and for each yi ∈ Rℓ

+

with pyi ≤ pωi, xi Ri yi. To solve fair division problems, we operate this
solution from equal division. We refer to this variant as the equal-division
Walrasian solution. We denote it Wed. Formally, given N ∈ N and
(R,Ω) ∈ FN , Wed(R,Ω) = W (R, ( Ω

|N | , . . . ,
Ω
|N |)).

The egalitarian-equivalent-in-trades solution associates with each
economy its allocations such that there is a reference trade that each agent
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finds indifferent to his assigned trade. The selections defined next are ob-
tained by requiring the reference trade to lie in a pre-specified direction.
To each direction is associated such a selection. Given r ∈ Rℓ

+, the r-
egalitarian-equivalent-in-trades rule, Er, associates with each N ∈ N
and each (R,ω) ∈ EN , the set of allocations x ∈ X(R,ω) for which there is
λ > 0 such that for each i ∈ N , xi Ii λr. To simplify language, we refer to
the family these rules constitute as “egalitarian”.

We formulate axioms for rules that may be correspondences, and first ask
whether the Walrasian solution (or the equal-division Walrasian solution)
satisfies them. We prove our negative results on two subdomains where these
two solutions are single-valued. First is the domain of economies in which
preferences are homothetic and strictly convex, and individual endowments
are proportional. Second is the domain of economies in which preferences
are quasi-linear and strictly convex.

The proofs of the negative results are by means of two-good counterex-
amples. We do not provide explicit formulas for preferences, but we indicate
what is needed for homotheticity or quasi-linearity of a convex preference
relation. The key requirement for homotheticity in the two-good case is that
if an upper-contour set at a point a ̸= 0 has a certain line of support,
then at each point above the ray from the origin passing through a, lines of
support to upper contour sets should be at least as steep. For quasi-linear
preferences, if an upper-contour set at a point a ∈ Rℓ

+ has a certain line
of support, then at each point above the horizontal line through a, lines of
support to upper contour sets should be at least as steep. On either domain,
for strict convexity of preferences to hold, these inequalities of slopes should
be strict.

The proofs involve specifying commodity bundles and slopes of lines of
support to indifference curves at these bundles, and constructing a map for
which the lines of support at these points take these pre-specified values. An
additional requirement may have to be satisfied that the indifference curve
through one of these points should pass through some third point, or below
some third point. For some proofs, several such requirements have to be
met. Each proof involves showing that all the requirements can be met.
In fact, in all of our examples, they can be met very simply by piece-wise
linear indifference curves with at most two or three pieces. This is what we
advise a reader who would be interested in constructing complete examples
to do in a first step. For a more demanding reader who would prefer that
preferences be smooth or strictly convex or both, approximations to piece-
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wise preferences with these properties can be easily defined that still respect
all of the requirements.

Other notation: Let supp(Ri, xi) denote the set of prices of support
to agent i’s upper contour set at xi.

3 Withdrawal-proofness

First, consider an economy and suppose that an agent withdraws, taking
his endowment with him; the rule is applied without him; some other agent
may then be assigned a bundle such that the sum of this bundle and the
endowment of the agent who withdrew can be re-divided between them so
that each of them ends up with a bundle that he finds at least as desirable
as his assignment if the first agent had not withdrawn, and at least one of
them prefers his new bundle to his assignment then. We require of a rule
that it be immune to this sort of behavior:2

Withdrawal-proofness: For each (R,ω) ∈ EN , each x ∈ φ(R,ω), each

{i, j} ⊂ N , each x′ ∈ φ(RN\{j}, ωN\{j}), each pair (yi, yj) ∈ Rℓ{i,j}
+ such that

yi + yj = x′
i +ωj, it is not the case that for each k ∈ {i, j}, yk Rk xk, and for

at least one k ∈ {i, j}, yk Pk xk.

The idea can be formulated in physical terms: it should not be the case
that, when an agent withdraws and the rule is applied without him, one of
the agents who stay is assigned a bundle such that the sum of this bundle
and the endowment of the agent who withdrew is at least as large as the
sum of the bundles they would have been assigned if he had not withdrawn:
using the notation of the formal statement, this version would end with: “it
is not the case that x′

i + ωj ≥ xi + xj.”

2In the context of voting theory, a property has been proposed to prevent manipulation
by withdrawal, the so-called “no-show paradox” (Brams and Fishburn, 1983). A critical
difference is that that theory is concerned with the choice of a public alternative. Thus,
there is no ex-post redistribution of resources. Such redistributions are essential to the
manipulations we are considering here. (The fact that the set of alternatives is finite should
also be noted but that is not the important difference.) The property of “pre-arranging–
proofness” formulated by Sönmez (1999) in the context of several-to-one matching also
implies variations in the agent set: a student and a college commit to each other prior to
the operation of the matching rule and as a result ends up better off. There too, there is
no counterpart to the ex-post reallocations that are essential here.

6



Example 1 The Walrasian rule is not withdrawal-proof on the homothetic
domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,ω) ∈ EN
hom in steps, as

follows. First, let ω ≡ ((100, 100), (100, 100), (140, 140)). Let x ∈ X(R,ω)
be equal to ((60, 140), (60, 140), (220, 60)). The trades x1 − ω1 = x2 − ω2

and x3 − ω3 are normal to p ≡ (1, 1). Below, we specify R ∈ RN
hom so that

x = W (R,ω).
Next, let agent 2 withdraw with his endowment. Let x′ ∈ X(R−2, ω−2) be

equal to ((57.5, 185), (182.5, 55)). The trades x′
1−ω1 and x′

3−ω3 are normal
to p′ ≡ (2, 1). Below, we specify R ∈ RN

hom so that x′ = W (R−2, ω−2).

Note that (i)
x′
12

x′
11

≃ 3.21 > 2.33 ≃ x12

x11
, and that (ii)

x′
32

x′
31

≃ .30 > .27 ≃ x32

x31
.

Also, (iii)
p′2
p′1

< p2
p1
. Because of (i) and (iii), we can choose R1 ∈ Rhom such

that p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), we can

choose R3 ∈ Rhom such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

Now, we verify that indeed x ∈ W (R,ω) and x′ ∈ W (R−2, ω−2). Finally,
we observe that x′

1 + ω2 = (157.5, 285) > (120, 280) = x1 + x2. Thus,
withdrawal-proofness is violated. (The property is violated in physical terms.)
�

Example 2 The Walrasian rule is not withdrawal-proof on the quasi-linear
domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,ω) ∈ EN
ql in steps, as

follows. First, let ω ≡ ((140, 140), (140, 140), (100, 100)). Let x ∈ X(R,ω)
be equal to ((160, 100), (160, 100), (60, 180)). The trades x1 − ω1 = x2 − ω2

and x3 − ω3 are normal to p ≡ (2, 1). Below, we specify R ∈ RN
ql so that

x = W (R,ω).
Next, let agent 2 withdraw with his endowment. Let x′ ∈ X(R−2, ω−2)

be equal to ((200, 80), (40, 160)). The trades x′
1 − ω1 and x′

3 − ω3 are normal
to p′ ≡ (1, 1). Below, we specify R ∈ RN

ql so that x′ = W (R−2, ω−2).
Note that (i) x′

12 = 80 < 100 = x12 and (ii) x′
32 = 160 < 180 = x32.

Also, (iii)
p′2
p′1

> p2
p1
. Because of (i) and (iii), we can choose R1 ∈ Rql such

that p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), we can

choose R3 ∈ Rql such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

Now, we verify that indeed x ∈ W (R,ω) and x′ ∈ W (R−2, ω−2). Fi-
nally, we observe that x′

1 + ω2 = (340, 220) > (320, 200) = x1 + x2. Thus,
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withdrawal-proofness is violated. (The property is violated in physical terms.)
�

Example 3 The r-egalitarian-equivalence-in-trades rules are not
withdrawal-proof on the classical domain.

In describing the example, and given two distinct points α and β, we
denote by ℓ(α, β) the line passing through them.

Let N ≡ {1, 2, 3}. The economy (R,ω) ∈ EN
cl is constructed in steps, as

follows. Let ω ≡ ((160, 40), (160, 40), (140, 200)). Let x ∈ X(R,ω) be equal
to ((100, 100), (100, 100), (260, 80)). The trades x1−ω1, x2−ω2, and x3−ω3

are normal to p ≡ (1, 1). Below, we specify R so that x ∈ Er(R,ω) with
reference trade t0 = (a, a) for a = 30 (in fact, x ∈ W (R,ω)).

Next, let agent 2 withdraw with his endowment. Let x′ ∈ X(R−2, ω−2) be
equal to ((55, 175), (245, 65)). The vector δ ≡ (b, b) for b = 15 is the vector by
which agent 3’s consumption will decrease as a result of this withdrawal. By
feasibility, it is the vector by which, in the end, the sum of agents 1 and 2’s
consumptions increase. Let x0 ≡ ω3+x3

2
and note that ℓ(x0, x

′
3) is parallel

to ℓ(x1, x
′
1). Let b ≡ 24 and c ≡ 27. The line ℓ(x′

3, ω3 + (b, b)) passes below
ω3 + (c, c). Let t′0 ≡ (c, c). Below, we specify R so that x′ ∈ Er(R−2, ω−2)
with reference trade t′0.

We choose R3 so that ℓ(x′
3, ω3 + (b, b)) is a line of support to agent 3’s

indifference curve through x′
3 at x

′
3 and this indifference curve passes through

ω3 + t′0. Next, we choose agent 3’s indifference curve through x3 to be sup-
ported by ℓ(x0, x3) at x3, to pass through ω3+ t0, and to be compatible with
the curve just drawn.

Next, we turn to agent 1. The line ℓ′ parallel to ℓ(x′
3, ω3+(b, b)) through x′

1

passes below x1. We specify agent 1’s indifference curve through x′
1 to be

supported by ℓ′ at x′
1, to pass below x1 and through ω1 + t′0. We specify

his indifference curve through x1 to be supported by ℓ(ω1, x1) at x1, to pass
through ω1 + t0, and to be compatible with the curve just drawn.

We verify that indeed x = Er(R,ω) with reference trade t0 = (a, a) and
that x′ = Er(R−2, ω−2). Also, because ω1+ω2+ω3 = x1+x2+x3, x

′
1+x′

3 =
ω1 + ω3, and x′

3 < x3, we have that x′
1 + ω2 = x1 + x2 + x3 − x′

3 > x1 + x2.
Thus withdrawal-proofness is violated. (The property is violated in physical
terms.) �
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4 Withdrawal-proofness for the problem of

fair division

In the previous definition, the agent who leaves does so with his endowment.
In the context of the problem of fair division, two versions of withdrawal-
proofness can be formulated. First is a version in which the social endowment
is not affected by the withdrawal. When an agent withdraws, he relinquishes
his rights on the social endowment, so that the resources available for distri-
bution among the remaining agents are what they were when he was present.

Withdrawal-proofness for fair division problems: For each (R,Ω) ∈
FN , each x ∈ φ(R,Ω), each {i, j} ⊂ N , each x′ ∈ φ(RN\{j},Ω), and each
pair (yi, yj) ∈ RℓN

+ such that yi + yj = x′
i, it is not the case that for each

k ∈ {i, j}, yk Rk xk, and for at least one k ∈ {i, j}, yk Pk xk.

The second scenario involves imagining that the agent who withdraws
does so with an equal share of the social endowment. Then, some agent
who stays may be assigned a bundle, that, when added to the bundle taken
with him by the agent who withdrew, can be redivided between them so
that each of them receives a bundle that he finds at least as desirable as his
initial assignment and at least one of them prefers. Immunity to this kind
of manipulation is a stronger requirement than withdrawal-proofness for fair
division problems. We will not discuss it further as our results pertaining to
the weak version of the property are all negative.

Withdrawal-proofness for fair division problems is related to population
monotonicity, the requirement that as population enlarges, each of the agents
initially present should end up at most as well off as he was initially (Thom-
son, 1983a,b bases on it characterizations of several solutions to the bargain-
ing problem; Chichilnisky and Thomson, 1987, and Kim, 2004, are applica-
tions of the idea to standard fair division problems). Suppose that an agent
withdraws from some initial economy. A violation of withdrawal-proofness
means the following: in the resulting smaller economy, there is some other
agent who, after transferring some of his assignment to the agent who with-
drew, still obtains a bundle that he prefers to his assignment in the initial
economy and the agent who withdrew is better off than if he had not with-
drawn. If the rule is efficient, this is possible only if some third agent is worse
off in the smaller economy than he was initially, in violation of population
monotonicity.
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Here too, the property can be formulated in physical terms: the formal
statement would then end with “it is not the case that x′

i ≥ xi + xj.”

Example 4 The equal-division Walrasian rule is not withdrawal-proof for
fair division problems on the homothetic domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,Ω) ∈ EN
hom in steps

as follows. First, let Ω ≡ (240, 240). Let x ∈ X(R,Ω) be equal to
((60, 86.66)(10, 103.33), (170, 50)). The trades x1 − Ω

3
= x2 − Ω

3
and x3 − Ω

3

are normal to p ≡ (1, 3). Below, we specify R ∈ RN
hom so that x = Wed(R,Ω).

Next, let agent 2 withdraw, relinquishing his rights on the social en-
dowment. Let x′ ∈ X(R−2,Ω) be equal to ((101.25, 195), (138.75, 45)). The
trades x′

1−Ω
2
and x′

3−Ω
2
are normal to p′ ≡ (4, 1). Below, we specifyR ∈ RN

hom

so that x′ = Wed(R−2,Ω).

Note that (i)
x′
12

x′
11

≃ 1.92 > 1.44 ≃ x12

x11
, and that (ii)

x′
32

x′
31

≃ .324 > .294 ≃
x32

x31
. Also, (iii)

p′2
p′1

< p2
p1
. Because of (i) and (iii), there is R1 ∈ Rhom such

that p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), there

is R3 ∈ Rhom such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

Now, we verify that indeed x ∈ Wed(R,Ω) and x′ ∈ Wed(R−2,Ω). Finally,
we observe that x′

1 = (101.25, 195) > (70, 190) = x1 + x2. Thus, weak
withdrawal-proofness is violated. (The property is violated in physical terms.)
�

Example 5 The equal-division Walrasian rule is not withdrawal-proof for
fair division problems on the quasi-linear domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,Ω) ∈ EN
ql in steps,

as follows. First, let Ω ≡ (240, 240). Let x ∈ X(R,Ω) be equal to
((35, 95), (35, 95), (170, 50)). The trades x1 − Ω

3
= x2 − Ω

3
and x3 − Ω

3
are

normal to p ≡ (1, 3). Below, we specify R ∈ RN
ql so that x = Wed(R,Ω).

Next, let agent 2 withdraw, relinquishing his rights on the social endow-
ment. Let x′ ∈ X(R−2,Ω) be equal to ((104, 184), (136, 56)). The trades
x′
1 − Ω

2
and x′

3 − Ω
2
are normal to p′ ≡ (4, 1). Below, we specify R ∈ RN

ql so
that x′ = Wed(R−2,Ω).

Note that (i) x′
12 = 184 > 95 = x12, and that (ii) x′

32 = 56 > 50 = x32.

Also, (iii)
p′2
p′1

< p2
p1
. Because of (i) and (iii), there is R1 ∈ Rql such that

p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), there is

R3 ∈ Rql such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

10



Let y1 = y2 ≡ x′
1

2
= (52, 92). We have py1 = 1×52+3×92 > 1×35+3×

95 = px1 so that we can specify R1 in such a way that in addition y1 P1 x1.
Let R2 ≡ R1. Then, y2 P2 x2. Thus, weak withdrawal-proofness is violated.�

Example 6 The r-egalitarian-equivalence rules are not withdrawal-proof for
fair division problems on the classical domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,Ω) ∈ EN
cl in steps, as

follows. [Consumption bundles and endowments are as in Example 5.] First,
let Ω ≡ (240, 240). Let x ∈ X(R,Ω) be equal to ((35, 95), (35, 95), (170, 50)).
The trades x1 − Ω

3
= x2 − Ω

3
and x3 − Ω

3
are normal to p ≡ (1, 3). Below, we

specify R ∈ RN
cl so that x = Er(R,Ω) for r = (1, 0).

Next, let agent 2 withdraw, relinquishing his rights on the social endow-
ment. Let x′ ∈ X(R−2,Ω) be equal to ((104, 184), (136, 56)). The trades
x′
1 − Ω

2
and x′

3 − Ω
2
are normal to p′ ≡ (4, 1). Below, we specify R ∈ RN

cl so
that x′ = Er(R−2,Ω).

Let t0 ≡ (70, 0) and t′0 ≡ (10, 0). Let R1 ∈ Rcl such that p ∈ supp(R1, x1),
x1 I1 (

Ω
3
+ t0), p

′ ∈ supp(R1, x
′
1) and x′

1 I1 (
Ω
2
+ t′0). Also, let R3 ∈ Rcl such

that p ∈ supp(R3, x3), x3 I3 (
Ω
3
+ t0), p

′ ∈ supp(R3, x
′
3), and x′

3 I3 (
Ω
2
+ t′0).

Let y1 = y2 ≡ x′
1

2
= (52, 92). We have py1 = 1×52+3×92 > 1×35+3×

95 = px1 so that we can specify R1 in such a way that in addition y1 P1 x1.
Let R2 ≡ R1. Then, y2 P2 x2. Thus, weak withdrawal-proofness is violated.
�

5 Endowments-merging–proofness

Another manipulation possibility for a pair of agents is that one of them en-
trusts his endowment to the other and withdraws; the rule is applied without
him; at the allocation that results, the second agent’s assignment may be a
bundle that can be divided between the two of them in such a way that each
of them is at least as well off as he would have been if the merging had not
taken place, and at least one of them is better off. We require immunity to
this sort of behavior:

Endowments-merging–proofness: For each (R,ω) ∈ EN , each x ∈
φ(R,ω), each {i, j} ⊂ N , each x′ ∈ φ(RN\{j}, ω

′
i, ωN\{i,j}), where ω

′
i ≡ ωi+ωj,

and each pair (yi, yj) ∈ RℓN
+ such that yi + yj = x′

i, it is not the case that for
each k ∈ {i, j}, yk Rk xk, and for at least one k ∈ {i, j}, yk Pk xk.
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The property can be formulated in physical terms: the formal statement
would then end with “it is not the case that x′

i ≥ xi + xj.”

Example 7 The Walrasian rule is not endowments-merging–proof on the
homothetic domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,ω) ∈ EN
hom in steps,

as follows. First, let ω ≡ ((60, 60), (60, 60), (140, 140)). Let x ∈ X(R,ω)
be equal to x ≡ ((35, 85)(5, 115), (220, 60)). The trades x1 − ω1 = x2 − ω2

and x3 − ω3 are normal to p ≡ (1, 1). Below, we specify R ∈ RN
hom so that

x = W (R,ω).
Next, let agent 2 merge his endowment with agent 1’s endowment and

withdraw. Let ω′
1 ≡ ω1 + ω2. Let x′ ∈ X(R−2, ω

′
1, ω3) be equal to

((77.5, 205), (182.5, 55)). The trades x′
1 − ω′

1 and x′
3 − ω3 are normal to

p′ ≡ (2, 1). Below, we specify R ∈ RN
hom so that x′ = W (R−2, ω

′
1, ω3).

Note that (i)
x′
12

x′
11

≃ 2.64 > 2.42 ≃ x12

x11
, and that (ii)

x′
32

x′
31

≃ .30 > .27 ≃ x32

x31
.

Also, (iii)
p′2
p′1

< p2
p1
. Because of (i) and (iii), there is R1 ∈ Rhom such that

p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), there is

R3 ∈ Rhom such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

Now, we verify that indeed x ∈ W (R,ω) and x′ ∈ W (R−2, ω
′
1, ω3). Fi-

nally, we observe that x′
1 = (77.5, 205) > (40, 200) = x1 + x2. Thus,

endowments-merging–proofness is violated. (The property is violated in
physical terms.) �

Example 8 The Walrasian rule is not endowments-merging–proof on the
quasi-linear domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,ω) ∈ EN
ql in steps,

as follows. First, let ω ≡ ((85, 50), (85, 50), (140, 140)). Let x ∈ X(R,ω) be
equal to ((70, 65)(20, 115), (220, 60)). The trades x1−ω1 = x2−ω2 and x3−ω3

are normal to p ≡ (1, 1). Below, we specify R ∈ RN
ql so that x = W (R,ω).

Next, let agent 2 merge his endowment with agent 1’s endowment and
withdraw. Let ω′

1 ≡ ω1 + ω2. Let x′ ∈ X(R−2, ω
′
1, ω3) be equal to

((135, 170), (175, 70)). The trades x′
1−ω′

1 and x′
3−ω3 are normal to p′ ≡ (2, 1).

Below, we specify R ∈ RN
ql so that x′ = W (R−2, ω

′
1, ω3).

Note that (i) x′
12 = 170 > 65 = x12, and that (ii) x′

32 = 70 > 60 = x32.

Also, (iii)
p′2
p′1

< p2
p1
. Because of (i) and (iii), there is R1 ∈ Rql such that
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p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), there is

R3 ∈ Rql such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

Now, we verify that indeed x ∈ W (R,ω) and x′ ∈ W (R−2, ω
′
1, ω3). Let

y1 = y2 ≡ x′
1

2
= (67.5, 85). Because py1 = 67.5 + 85 > 70 + 65 = px1, then

R1 can be specified so that in addition y1 P1 x1. Because R2 = R1, then
y2 P2 x2. Thus, endowments-merging–proofness is violated. �

Example 9 The egalitarian-equivalence-in-trades rules are not endowments-
merging–proof on the classical domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,ω) ∈ EN
ql in steps, as follows.

First, let ω ≡ ((80, 80), (80, 80), (220, 140)). Let x ∈ X(R,ω) be equal to
((40, 120)(40, 120), (300, 60)). The trades x1 − ω1 = x2 − ω2 and x3 − ω3 are
normal to p ≡ (1, 1). Below, we specify R ∈ RN

cl so that x = Er(R,ω) for
r ≡ (1, 1).

Next, let agent 2 merge his endowment with agent 1’s endowment and
withdraw. Let ω′

1 ≡ ω1 + ω2. Let x′ ∈ X(R−2, ω
′
1, ω3) be equal to

((100, 260), (280, 40)). The trades x′
1−ω′

1 and x′
3−ω3 are normal to p′ ≡ (5, 3).

Below, we specify R ∈ RN
cl so that x′ = Er(R−2, ω

′
1, ω3).

Let t0 ≡ (20, 20) and t′0 ≡ (10, 10). There is R1 ∈ Rcl such that p ∈
supp(R1, x1), p

′ ∈ supp(R1, x
′
1), x1 I1 (ω1 + t0) and x′

1 I1 (ω
′
1 + t′0). Because

R2 = R1, then p ∈ supp(R2, x2), and x2 I2 (ω2 + t0). Also, there is R3 ∈ Rcl

such that p ∈ supp(R3, x3), p
′ ∈ supp(R3, x

′
3), x3 I3 (ω3 + t0) and x′

3 I3
(ω3 + t′0).

Now, we verify that indeed x = Er(R,ω) and x′ = Er(R−2, ω
′
1, ω3). Fi-

nally, we note that x′
1 = (100, 260) > (80, 240) = x1+x2. Thus, endowments-

merging–proofness is violated.(The violation is in physical terms.) �

6 Endowments-splitting–proofness

Symmetrically to the behavior examined in the previous section, here an
agent transfers some of his endowment to some agent who was not initially
present; the rule is applied, and the guest transfers his assignment to the
agent who invited him; now the first agent may have access to a bundle that
he prefers to his initial assignment. We require immunity to this sort of
behavior:

13



Endowments-splitting–proofness: For each (R,ω) ∈ EN , each x ∈
φ(R,ω), each i ∈ N , each j /∈ N , each R′

j ∈ R, and each pair (ω′
i, ω

′
j) ∈

Rℓ{i,j}
+ such that ω′

i + ω′
j = ωi, each x′ ∈ φ(R,R′

j, ω
′
i, ωN\{i}, ω

′
j), we have

xi Ri (x
′
i + x′

j).

The possibility that agents in a group may gain by transferring endow-
ments among themselves has been considered previously (Gale, 1974; Postle-
waite, 1979). In the context of the adjudication of conflicting claims, manip-
ulation takes the form of claims transfers. By contrast to the phenomenon
studied here, these manipulations do not affect the set of active agents. How-
ever, the merging and splitting of claims that has played an important role in
the study of the adjudication of conflicting claims does (O’Neill, 1982; de Fru-
tos, 1999; Ju, 2003; Ju, Miyagawa, and Sakai, 2007; Ju and Moreno-Ternero,
2006, 2011), and so does the merging and splitting of time allotments in the
theory of scheduling (Moulin, 2007, 2008). Returning to our model, it is clear
that the manipulation will be made easier if no restrictions are imposed on
the preferences of the new agent. A natural such restriction is that the new
agent’s preferences are the same as those of some agent initially present. We
operate under that constraint in constructing our examples.

The property can be formulated in physical terms, substituting in the
conclusion of our earlier statement the statement “then xi = (x′

i + x′
j).”

3

Example 10 The Walrasian rule is not endowments-splitting–proof on the
homothetic domain.

Let N ≡ {1, 3}. We construct an economy (R,ω) ∈ EN
hom in steps, as

follows. First, let ω ≡ ((120, 120), (120, 120)). Let x ∈ X(R,ω) be equal
to x ≡ ((60, 180)(180, 60)). The trades x1 − ω1 and x3 − ω3 are normal to
p ≡ (1, 1). Below, we specify R ∈ RN

hom so that x = W (R,ω).
Next, let agent 1 split his endowment with a new agent, agent 2, whose

preferences R2 are the same as those of agent 3. Let ω′
1 = ω′

2 ≡ ω1

2
. Let

x′ ∈ X(R1, R2, R3, ω
′
1, ω

′
2, ω3) be equal to ((27, 159)(71, 27), (142, 54)). The

trades x′
1 − ω′

1, x
′
2 − ω′

2, and x′
3 − ω3 are normal to p′ ≡ (3, 1). Below, we

specify R ∈ RN
hom so that x′ = W (R1, R2, R3, ω

′
1, ω

′
2, ω3).

Note that (i)
x′
12

x′
11

≃ 5.88 > .30 = x12

x11
and that (ii)

x′
32

x′
31

≃ .38 > .33 ≃ x32

x31
.

Also, (iii)
p′2
p′1

< p2
p1
. Because of (i) and (iii), there is R1 ∈ Rhom such that

3Vector inequalities: x = y; x ≥ y, x > y.
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p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), there is

R3 ∈ Rhom such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3). Also, because

x′
22

x′
21

=
x′
32

x′
31
, we can choose R2 = R3.

Now, we verify that indeed x ∈ W (R,ω) and x′ ∈
W (R1, R2, R3, ω

′
1, ω

′
2, ω3). Note that x′

1 + x′
2 = (98, 186) > (60, 180) = x1.

Thus, endowments-splitting–proofness is violated in physical terms. �

Example 11 The Walrasian rule is not endowments-splitting–proof on the
quasi-linear domain.

Let N ≡ {1, 3}. We construct an economy (R,ω) ∈ EN
ql in steps, as

follows. First, let ω ≡ ((40, 180)(200, 60)). Let x ∈ X(R,ω) be equal to
x ≡ ((80, 100)(160, 140)). The trades x1 − ω1 and x3 − ω3 are normal to
p ≡ (2, 1). Below, we specify R ∈ RN

ql so that x = W (R,ω).
Next, let agent 1 split his endowment with a new agent, agent 2,

whose preferences R2 are the same as his. Let ω′
1 = ω′

2 ≡ ω1

2
. Let

x′ ∈ X(R1, R2, R3, ω
′
1, ω

′
2, ω3) be equal to ((50, 60), (50, 60), (140, 120)). The

trades x′
1 − ω′

1, x
′
2 − ω′

2, and x′
3 − ω3 are normal to p′ ≡ (1, 1). Below, we

specify R ∈ RN
ql so that x′ = W (R1, R2, R3, ω

′
1, ω

′
2, ω3).

Note that (i) x12 = 100 > 60 = x′
12, and that (ii) x32 = 140 > 120 = x′

32.

Also, (iii)
p′2
p′1

> p2
p1
. Because of (i) and (iii), there is R1 ∈ Rql such that

p ∈ supp(R1, x1) and p′ ∈ supp(R1, x
′
1). Because of (ii) and (iii), there is

R3 ∈ Rql such that p ∈ supp(R3, x3) and p′ ∈ supp(R3, x
′
3).

Now, we verify that indeed x ∈ W (R,ω) and x′ ∈
W (R1, R2, R3, ω

′
1, ω

′
2, ω3). Note that x′

1 + x′
2 = (100, 120) > (80, 100) = x1.

Thus, endowments-splitting–proofness is violated. (The violation is in in
physical terms.) �

Example 12 The r-egalitarian-equivalence-in-trades rules are not
endowments-splitting–proof on the classical domain.

Let N ≡ {1, 3}. We construct an economy (R,ω) ∈ EN
cl in steps, as

follows. First, let ω ≡ ((160, 160), (200, 140)). Let x ∈ X(R,ω) be equal
to x ≡ ((80, 240), (280, 60)). The trades x1 − ω1 and x3 − ω3 are normal to
p ≡ (1, 1). Let r ≡ (1, 1). Below, we specify R ∈ RN

cl so that x = Er(R,ω)
(in fact, x = W (R,ω)).

Next, let agent 1 split his endowment with a new agent, agent 2,
whose preferences R2 are the same as his. Let ω′

1 = ω′
2 ≡ ω1

2
. Let
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x′ ∈ X(R1, R2, R3, ω
′
1, ω

′
2, ω

′
3) be equal to ((50, 130), (50, 130), (260, 40)). The

trades x′
1 − ω′

1, x′
2 − ω′

2, and x′
3 − ω3 are normal to p′ ≡ (5, 3). Be-

low, we specify R ∈ RN
cl so that x′ = Er(R1, R2, R3, ω

′
1, ω

′
2, ω3) (in fact,

x′ = W (R1, R2, R3, ω
′
1, ω

′
2, ω3)).

Let t0 ≡ (20, 20) and t′0 ≡ (10, 10). We note that there is R1 ∈ Rcl such
that p ∈ supp(R1, x1), p

′ ∈ supp(R1, x
′
1), x1 I1 (ω1 + t0), and x′

1 I1 (ω
′
1 + t′0).

Also, there is R3 ∈ Rcl such that p ∈ supp(R3, x3), p
′ ∈ supp(R3, x

′
3), x3 I3

(ω3 + t0), and x′
3 I3 (ω

′
3 + t′0).

Now, we verify that indeed x ∈ Er(R,ω) and x′ ∈
Er(R1, R2, R3, ω

′
1, ω

′
2, ω3). Note that x′

1 + x′
2 = (100, 260) > (80, 240) = x1.

Thus, endowments-splitting–proofness is violated.(The violation is in
physical terms.) �

7 Pre-delivery–proofness

Our final scenario involves one agent making a “pre-delivery” to some other
agent of the trade that this other agent would be assigned if he, the second
agent, had participated with everyone else. The agent who undertakes the
pre-delivery starts out with a different endowment. After the rule is applied,
he may end up with a bundle that he prefers to his assignment if he had not
carried out the pre-delivery. We require immunity to this sort of behavior:

Pre-delivery–proofness: For each (R,ω) ∈ EN , each x ∈ φ(R,ω), each
{i, j} ⊂ N such that ωi+ωj −xj = 0, each x′ ∈ φ(RN\{j}, ω

′
i, ωN\{i,j}) where

ω′
i ≡ ωi + ωj − xj, we have xi Ri x

′
i.

The property can also be formulated for the problem of fair division.
We have a negative result for the egalitarian rules:

Example 13 The r-egalitarian-equivalence-in-trades rules is not pre-
delivery–proof on the classical domain.

Let N ≡ {1, 2, 3}. We construct an economy (R,ω) ∈ EN
cl in steps, as

follows. First, let ω ≡ ((120, 80), (120, 80), (140, 200)). Let x ∈ X(R,ω) be
equal to ((40, 160), (160, 40), (180, 160)). The trades x1 − ω1 and x3 − ω3 are
normal to p ≡ (1, 1). Below, we specify R ∈ RN

cl so that x = Er(R,ω) with
r = (1, 1).
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We then let agent 1 pre-delivers his net trade to agent 2. His revised
endowment is ω′

1 ≡ ω1 − x2 + ω2 = (80, 120). Let x′ ∈ X(R1, R3, ω
′
1, ω3)

be equal to ((50, 170)), (170, 150)). Below, we specify R ∈ RN
cl so that p ∈

supp(R1, x
′
1) and p ∈ supp(R3, x

′
3).

Let t0 ≡ (20, 20) and t′0 ≡ (15, 15). There is R1 ∈ Rcl such that p ∈
supp(R1, x1), p ∈ supp(R1, x

′
1), x1 I1 (ω1 + t0), and x′

1 I1 (ω′
1 + t′0). There

is R2 ∈ Rcl such that p ∈ supp(R2, x2) and x2 I2 (ω2 + t0). Finally, there is
R3 ∈ Rcl such that p ∈ supp(R3, x3), x3 I3 (ω3 + t0), p ∈ supp(R3, x

′
3), and

x′
3 I3 (ω3 + t′0).
Now, we verify that indeed x ∈ Er(R,ω) with r ≡ (1, 1), and that x′ ∈

Er(R1, R3, ω
′
1, ω3). Finally, we observe that x′

1 = (50, 170) > (40, 160) = x′
1.

Thus, pre-delivery–proofness is violated. (The violation is in physical terms.)
�

It is easy to see that the same negative result holds when the endowments
are equal initially.

The Walrasian rule is pre-delivery–proof. Indeed, if endowments change
in the manner described in the hypotheses of the axiom, their values at the
initial equilibrium prices remain the same, so that these prices remain equi-
librium prices. (In fact, consider any balanced reassignment of endowments
such that each agent’s revised endowment remains in his initial equilibrium
hyperplane. Then, if the same prices are quoted, the same list of bundles for
the agents who stay still satisfy the Walrasian maximization requirements.)
The equal-division Walrasian rule is also obviously pre-delivery–proof.

Thus, we end with the following positive results.

Proposition 1 The Walrasian rule is pre-delivery–proof, and so is the equal-
division Walrasian rule.

8 Concluding comments

We conclude with some remarks and open questions.

1. In light of the mainly negative results we formulated, it is natural to
explore variants of the requirements obtained by restricting how agents can
manipulate. The manipulation is less likely to be profitable if one insists that
the manipulating agents (agents i and j in our original definitions) be able
to divide the resources they end up controlling in such a way that:
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(i) A simple redistribution scheme is used in the second stage. In that
respect, we have already noted that in most of the examples we construct
for our proofs, the welfare improvements for the two agents engaging in
the manipulation is obtained by simply dividing equally the resources they
end up controlling. Thus, at that stage at least, and for the examples, no
sophisticated redistribution scheme is needed. Equal division is not efficient
for them, so by trading from there, they can achieve further welfare gains,
providing them with an additional incentive to manipulate.

(ii) The same rule is used in both rounds. This is a probably less natural
restriction. If agents have the ability to escape detection in the manner
in which they manipulate endowments, it is not clear why they should be
compelled to respect the rule when distributing the gains they can achieve
by this behavior.

2. Other forms of manipulation of allocation rules through manipula-
tions of endowments have been studied, and for some of them, an extensive
literature is available. A well-known possibility is that an agent may gain
by transferring some of his endowment to another agent, without the other
agent being hurt (Gale, 1974). More generally, one may be concerned about
arbitrary transfers of endowments among several agents (Postlewaite, 1979).
An agent may also gain by withholding some of his endowment (Postlewaite,
1979; Thomson, 1987). An agent may even gain by destroying some of his
endowment (Aumann and Peleg, 1974; Postlewaite, 1979). Finally, an agent
may gain by artificially augmenting his endowment through exaggeration or
borrowing (Thomson, 2005). What distinguishes these forms of manipulation
from the ones we formulated here is that none of them is accompanied by
variations in the set of active agents. Our focus here was on that possibility.

3. For each of the behaviors we have discussed, we could imagine more
than two agents participating. For instance, a group of agents could withdraw
with their endowments and after the rule is applied to the smaller economy
involving the remaining agents, look for a redistribution of the resources that
they and several of the agents who stayed now control, at which each of these
conspirators would be at least as well off and at least one of them better off.
Our negative results are made all the stronger by the fact that we considered
minimal groups for which the manipulation is meaningful.

On the other hand, the positive result concerning the pre-delivery–
proofness of the Walrasian rule is not robust to the formation of larger
groups of manipulating agents. Indeed, when a group of two agents, say,
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get together to pre-deliver to some third agent the net trade that this agent
has been assigned by this rule in some initial economy, they may do so in
such a way that their revised endowments do not belong to their original
budget hyperplanes. The situation then is akin to one mentioned in the pre-
ceding paragraph, when in a fixed-population model, two agents manipulate
by redistributing endowments among themselves before participating. It is
not exactly the same because here the manipulation opportunities open to
the conspirators are constrained by the fact that the sum of their revised
endowments will differ from its pre-manipulation value (the difference is the
trade assigned to the third agent), whereas in the fixed-population version,
the pre-manipulation and post-manipulation sums are equal. Still, in the
new economy, it is clear that there is no reason why the original equilibrium
prices should remain so, and easy to imagine that the conspirators could
gain.

Sertel and Yıldız (2004) consider a scenario according to which the agents
who leave apply the rule among themselves and when the conspirators get
together, the rule is applied again. They ask whether the core can be ma-
nipulated in this manner.

4. Going beyond the two specific rules that we have examined, we would
of course like to know whether the principles we have formulated are com-
patible with efficiency and any of the distributional concepts that have been
studied in the literature (the endowments lower bound, no-envy-in-trades,
egalitarian-equivalence-in-trades). We leave these questions to future re-
search. In the light of what we know about related properties, we suspect
that the answers will be negative.4

4Consider rules defined as follows: a reference order is chosen on the set of potential
agents; for each economy, we select the efficient allocation(s) at which the agent who is first
in the order induced by the reference order on the population of agents who are actually
present reaps all the gains from exchange subject to each of the others being assigned a
bundle that he finds at least as desirable as his endowment. A small step in the direction
of proving our conjectures is that these constrained sequential priority rules (constrained
by the endowments lower bound requirement) satisfy none of the properties we formulate.
The proofs of these negative results, which hold on both the homothetic domain and the
quasi-linear domain, can be obtained from the author upon request.
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