
 

 

 

 

 

Choice-theoretic Solutions for Strategic Form Games 

 

John Duggan Michel Le Breton 

 

Working Paper No. 580 

March 2014 



Choice-theoretic Solutions for Strategic Form Games∗

John Duggan

Department of Political Science

and Department of Economics

University of Rochester

Rochester, NY 14627 USA

Michel Le Breton

Toulouse School of Economics

Institut Universitaire de France

Manufacture des Tabacs

31000, Toulouse FRANCE

March 5, 2014

Abstract

We model a player’s decision as a choice set and analyze equilibria in which each
player’s choice set is a best response to the other players’ sets. We formalize the
notion of best response by an abstract “choice structure,” which captures iteratively
undominated strategies (for several definitions of dominance), rationalizability, and
a number of formulations of choice sets. We investigate properties of choice struc-
tures and provide a general existence result for choice-theoretic solutions. We give
sufficient conditions for uniqueness of a maximal solution, we provide a robust iter-
ative procedure for computing this solution, and we show that it encompasses the
strategy profiles possible under common knowledge of the choice structure. We also
give sufficient conditions for uniqueness of a minimal solution for a class of games
that includes two-player games with Pareto optimal payoffs and n-player games with
a unique mixed strategy equilibrium. Our uniqueness results for maximal solutions
explain many known features of iterative elimination of strictly dominated strate-
gies, as well as regularities observed in the literature on rationalizability, and they
apply to a number of new choice structures. Our uniqueness result for minimal so-
lutions generalizes Shapley’s (1964) uniqueness result for the saddle of a two-player,
zero-sum game, and it provides conditions under which there is a unique minimal
rationalizable set.

∗This paper synthesizes and supersedes “Dominance-based Solutions for Strategic Form Games,” by
the authors, and “A Non-binary Approach to Duggan and Le Breton’s Dominance-based Solutions,” by
the first author. We thank seminar participants at the 1996 Canadian Economic Theory Meetings and
at the University of Iowa, University of Chicago, and Rutgers University.
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1 Introduction

The focus of game theory, and the source of its richness, is the strategic indeterminacy

inherent in many social situations: players may have incentives to engender strategic

uncertainty, and in such cases, it is not possible to make a consistent point prediction

in terms of pure strategies. The traditional approach to resolving this indeterminacy

is to view the players’ decisions (or beliefs) as probabilistic, and to model behavior in

terms of mixed strategies (cf. von Neumann and Morgenstern (1944) and Nash (1951)).

The standard approach yields generalized point predictions in the extended space of

mixed strategy profiles, but this benefit comes at the cost of assuming a particular

model of beliefs and preferences over lotteries. Moreover, the concept of mixed strategy

equilibrium generally relies not only on common knowledge of rationality, but on mutual

knowledge of the players’ mixed strategies themselves.1

We propose an alternative approach to the resolution of strategic indeterminacy

based on the classical theory of choice (cf. Arrow (1959), Richter (1966), and Sen

(1971)), in which behavior is formalized by a choice function that specifies the plausible

choices for an agent as a function of the feasible set. We model uncertainty regarding a

player’s decision by a set of plausible pure strategies, rather than using mixed strategies,

that may depend on the choice sets of other players, and the objects of analysis are

equilibria in terms of the players’ choice sets. More precisely, we define a “solution”

as a profile (Y1, . . . , Yn) of subsets of strategies, one set for each player, such that each

player’s choice set is a best response to the choice sets of the other players. We take

an abstract perspective on the meaning of “best response,” augmenting the standard

primitives of a strategic form game with a mapping Ci(Y1, . . . , Yn) for each player that

specifies the viable choice sets (i.e., best responses) for player i given the choice sets

of others. We refer to C = (Ci) as a “choice structure.” The specification of a choice

structure for each player is analogous to adding preferences over mixed strategy profiles

in the standard approach; indeed, a choice structure may be based on the notion of

expected utility, but it need not be. Then a solution, given the choice structure C , is a

profile (Y1, . . . , Yn) of choice sets such that Yi ∈ Ci(Y1, . . . , Yn) for all players i.

We consider several properties of abstract choice structures and give conditions

1See Aumann and Brandenburger (1995) for work on the epistemic foundations of Nash equilibrium.
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under which: (i) at least one solution exists, (ii) there is a unique solution that is

maximal with respect to set inclusion, and this can be obtained via a robust iterative

procedure, and (iii) there is a unique minimal solution. We refer to a maximal solution

as a “C -tract” and to a minimal solution as a “C -core.” Furthermore, we show that

under conditions for (ii), the unique C -tract corresponds to the possible strategy profiles

when common knowledge of the choice structure is assumed (but not common or mutual

knowledge of the choice sets themselves). The conditions imposed for these results are

fairly permissive, and we generate a family of results as the choice structure is varied,

providing insights into some existing game-theoretic concepts and some new ones. We

can easily specialize the framework to capture players who eliminate strictly dominated

strategies, given the other players’ choice sets. Here, given (Y1, . . . , Yn), a player i’s

choice set consists of any strategy such that no strategy always yields a strictly higher

payoff as the other players’ strategies vary across Y−i. This generates the “Shapley

solutions,” the coarsest of the solutions we consider. From our uniqueness results for

C -tracts, we obtain the well-known fact that iterative elimination of strictly dominated

strategies determines a unique set, regardless of the order of elimination. Under this

specification, a C -core extends Shapley’s (1964) notion of the saddle of a two-player,

zero-sum game, and our uniqueness result for C -cores generalizes his result to a class of

multi-player games that we call “equilibrium safe.” In Appendix B, we show that every

two-player, zero-sum game is equilibrium safe, as are all games with a unique mixed

strategy equilibrium.

The analysis captures ideas of rationalizability by defining the viable choice set of a

player to consist of all pure-strategy best responses to the plausible strategies of other

players, or to mixtures over the plausible strategies of others; a solution in the first sense

is a point rationalizable set, and a solution in the second sense is a rationalizable set. We

then obtain well-known characterizations of the (point) rationalizable strategy profiles,

due to Bernheim (1984) and Pearce (1984), including the fact that the rationalizable

strategy profiles are obtained by iteratively deleting all strategies that are never best

responses. An implication of our results is that this outcome is independent of the precise

order in which these strategies are deleted, generalizing (for the case of finite games)

Bernheim’s Propositions 3.1 and 3.2. We also obtain results on minimal rationalizable

and point rationalizable sets, the former coinciding with the minimal CURB sets of
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Basu and Weibull (1991); these solutions are axiomatized by Voorneveld, Kets, and

Norde (2005) and given epistemic foundations by Asheim, Voorneveld, and Weibull

(2009). Existence of such sets is relatively straightforward,2 but we also show that in

equilibrium safe games, there is a unique minimal rationalizable set, a set that contains

all best responses to all mixed strategy profiles supported by it and that is included in

all other sets with that property. This generalizes Theorem 6 of Duggan and Le Breton

(1999), which holds for a special class of two-player, zero-sum games generated by an

underlying tournament relation (in the sequel, we refer to these as “tournament games”),

and it complements Proposition 2 of Pruzhansky (2003), which establishes a unique

minimal CURB in finite extensive form games of perfect information. An implication

is that there is a uniquely tightest prediction consistent with common knowledge of

rationality, an observation that can significantly simplify the computation of minimal

rationalizable sets in such games.3

Our general approach subsumes several other choice structures, some considered in

the literature and some novel. Börgers (1993) characterizes the strategies that are ra-

tional (i.e., best responses to some profile of mixed strategies for the other players) for

some expected utility preferences compatible with the player’s ordinal payoffs. He shows

that these strategies are exactly those surviving one round of elimination of an inter-

mediate form of dominance that we call “Börgers dominance,” but he does not consider

the implications of common knowledge in his setting. Our results imply that: there is

a unique maximal Börgers solution, that this can be obtained by iterative elimination

of Börgers dominated strategies, and that these are exactly the strategy profiles im-

plied by common knowledge of the players’ ordinal preferences and rationality for some

compatible von Neumann-Morgenstern preferences.4 Moreover, we show that there is

a unique minimal Börgers solution in equilibrium safe games, with an interpretation

similar to that for the minimal rationalizable set, weakening common knowledge of von

Neumann-Morgenstern preferences to common knowledge of ordinal preferences.

We also consider a version of the Shapley choice structure that permits mixing, while

2The existence result of Basu and Weibull (1991) for minimal CURB sets applies to infinite games
and is more general than ours in this respect.

3For computational work on minimal rationalizable sets, see, e.g., Benisch, Davis, and Sandholm
(2006) and Klimm, Sandholm, and Weibull (2010).

4See also Fishburn (1978) for an equilibrium point approach to this problem.
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maintaining the focus on choice sets that consist of pure strategies: given choice sets of

the other players, a player’s choice set consists of any pure strategy such that there is no

mixed strategy that always yields a strictly higher payoff as the strategies of other players

are varied within their choice sets. This choice structure is investigated by Duggan and

Le Breton (1999, 2001) for the class of tournament games, and the minimal solution

corresponding to this choice structure is termed the “mixed saddle” in that work. In

this paper, our results on uniqueness of minimal solutions generalize their result to

equilibrium safe games. Furthermore, we prove uniqueness of maximal mixed Shapley

solutions for general strategic form games, provide an iterative procedure for calculating

it, and establish the common knowledge foundations of the maximal solution. We also

consider new choice structures, “monotonic maximin” and “monotonic leximin,” based

on pessimistic conjectures that possess unique maximal solutions that can be computed

by iteratively rejecting unsatisfactory strategies.

Alternative forms of rationality and non-expected utility preferences have been con-

sidered in the game-theoretic literature,5 and equilibria in terms of sets have been con-

sidered elsewhere. Along with the saddle, Shapley (1964) defines a refinement, the weak

saddle, using weak, rather than strict, dominance, and these correspond to the minimal

“weak Shapley solution” in the current framework. Although existence and uniqueness

of the weak saddle do not hold generally, Duggan and Le Breton (1996) establish these

properties for two-player, zero-sum games with non-zero off-diagonal payoffs. What we

call “point rational solutions” and “rational solutions” are the fixed points of Bernheim’s

(1984) best response operators, λ and Λ, respectively. Samuelson’s (1992) “consistent

pairs” correspond to weak Shapley solutions. Closely related is the weakly admissible

set of McKelvey and Ordeshook (1976) in the context of spatial models of politics.

Kalai and Samet (1984) define the notion of persistent retract as a minimal subset

of mixed strategy profiles possessing a particular stability property, and they show

that when players do not have redundant strategies, each such solution is defined by a

product of choice sets of pure strategies. Voorneveld (2004,2005) defines a preparation

set directly as a product of choice sets satisfying the weaker stability property that each

5Perfect and cautious rationalizability are defined by Bernheim and Pearce in an attempt to refine
away less credible rationalizable strategies. Brandenburger (1992) and Stahl (1995) explore the bounds
on rational play when players evaluate lotteries using lexicographic probability systems, as in Blume,
Brandenburger, and Dekel (1991).
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player’s choice set contain a best response to all mixed strategy profiles with probability

one on the others’ sets, and he proves that minimal preparation sets exist in a general

class of games and that they coincide with the persistent retracts in generic games.6

Tercieux (2006) defines a p-best response set as a product of choice sets such that each

player’s set contains all best responses to strategy profiles that place at least probability

p on the other players’ choice sets; for two-player games, he shows existence and, if

p ≤ 1

2
, uniqueness of a minimal p-best response set. Goemans, Mirrokni, and Vetta

(2005) define a sink equilibrium as a subset of strategy profiles that is an irreducible,

absorbing set for the “better response” graph; these subsets need not have a product

structure, however, so they cannot be reduced to a product of choice sets.

The next section presents the choice-theoretic framework for the analysis of strategic

form games, and it provides a basic existence result for choice structures satisfying a

weak monotonicity condition. Section 3 specializes the framework to choice structures

that have a binary representation and provides numerous results on the properties of

such binary structures. Section 4 focusses on specific examples of choice structures and

the logical relationships among them. Section 5 contains the uniqueness results of the

paper. Section 6 concludes. Appendix A contains proofs omitted from Section 3, and

Appendix B contains auxiliary results on equilibrium safe games.

2 Choice-theoretic Framework

In this section, we lay out the choice-theoretic framework for the analysis of strategic

form games, and we provide a basic existence result. We consider a non-cooperative

strategic form game Γ = (I, (Xi)i∈I , (ui)i∈I), where I is a non-empty, finite set of players,

denoted i or j; each Xi is a non-empty, finite set of strategies, denoted xi, yi, etc.; and ui

is a payoff function defined on X ≡ Πi∈IXi, with elements denoted x, y, etc.7 Subsets

of Xi are denoted Yi or Zi, and we write X =
{

∏

i∈I Yi | for all i, ∅ 6= Yi ⊆ Xi

}

for

the collection of products of nonempty sets of strategies. Typical elements of X will

be denoted Y =
∏

i∈I Yi or Z =
∏

i∈I Zi. Given a player j and a collection (Yi)i6=j, we

6See Lavi and Nisan (2005) for the related concept of set-Nash equilibria in the pure sense, which
demands that each player’s choice set contain a best response to all profiles of pure strategies from the
others’ choice sets.

7We allow the possibility that Γ is the strategic form of a finite extensive game, or a finite Bayesian
game. We do not, however, exploit the additional structure that is present in these applications.
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write Y−j for Πi6=jYi and x−j, y−j, etc., for typical elements of Y−j. A strategy profile x

is a Nash equilibrium (in pure strategies) if for all i and all yi ∈ Xi, ui(x) ≥ ui(yi, x−i);

and it is a strict Nash equilibrium if the latter inequality holds strictly for all i and all

yi distinct from xi.

Following the classical theory of choice (Arrow (1959), Richter (1966), Sen (1971)),

we model a player i’s decision as a choice set, a set Yi of strategies acceptable to i

according to some criterion. Whereas the standard approach to equilibrium analysis

requires players’ preferences over lotteries, we must instead specify how player i for-

mulates her choice set Yi. This set should be allowed to vary with the choice sets of

other players, Y−i, and a general theory should take an abstract view of the formulation

of a choice set. It is common to model a player’s choice set as the maximal elements

of a binary relation representing her strategic incentives, but we can more generally

allow for choice sets defined by consistency properties, such as the internal and external

consistency properties that characterize the stable sets of von Neumann and Morgen-

stern; in this case, it is important to allow for multiple choice sets consistent with a

player’s strategic preferences, given the choice sets of other players.8 We develop the

general model in this section, without committing to a particular mechanism for the

construction of choice sets, and we impose greater structure as the analysis proceeds.

Thus, given the product set Y of strategy profiles, we will write Ci(Y ) for the

collection of viable choice sets Yi ⊆ Xi given the choice sets Y−i of the other players.

Formally, the correspondence Ci : X ⇉ 2Xi \ {∅} is a choice structure for i if for all

Y ∈ X,

(i) for all Y ′ ∈ X, Y−i = Y ′
−i implies Ci(Y ) = Ci(Y

′),

(ii) for all distinct Y ′
i , Y

′′
i ∈ Ci(Y ), neither Y ′

i ⊆ Y ′′
i nor Y ′′

i ⊆ Y ′
i ,

(iii) for all Y ′
i ∈ Ci(Y ), all yi ∈ Y ′

i and all xi ∈ Xi, there exists y−i ∈ Y−i such that

ui(xi, y−i) ≤ ui(yi, y−i).

Given i, Ci, and Y ∈ X, we say Y ′
i is viable for i if Y ′

i ∈ Ci(Y ). Condition (i) merely

formalizes the idea that the viable choice sets for i depend on the choice sets of the other

8Another example of a framework that relies on multiplicity of choice sets is the theory of preparation
sets, due to Voorneveld (2004,2005), in which a set Yi is a viable choice set if for every belief with support
on Y−i, the set Yi contains at least one best response. Of the special cases considered in the sequel,
only Nash dominance and mixed Nash dominance allow multiple viable choice sets.
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players. Condition (ii) requires that the player’s viable choice sets are non-nested and

implicitly excludes the use of redundant strategies, and it is consistent with our focus on

maximal and minimal solution concepts in the sequel.9 Condition (iii), which connects

the choice structure to player i’s payoffs in the underlying game, requires that no strategy

belonging to a viable choice set is strictly dominated over profiles of other players’

strategies in their choice sets. In particular, if Y−i is a singleton, e.g., Y−i = {y−i}, then

the viable choice sets Y ′
i ∈ Ci(Y ) for player i are subsets of best responses to y−i; and

if y is a strict Nash equilibrium, then it is a C -solution. Then C = (Ci)i∈I is a choice

structure if Ci is a choice structure for each i. The preceding definition is abstract, and

in particular it does not impose a specific relationship between choice structure for i

and the player’s payoff function; of course, particular choice structures of interest will

rely on further properties of the players’ payoff functions.

Given the choice structure C , a product set Y ∈ X is a C -solution if for all i, we have

Yi ∈ Ci(Y ); that is, the choice sets are in equilibrium, in the sense that each player’s

choice set is viable given correct expectations of the other players’ choice sets. A product

set Y is an outer C -solution if for all i, there exists Zi ∈ Ci(Y ) such that Zi ⊆ Yi, and Y

is an inner C -solution if for all i, there exists Zi ∈ Ci(Y ) such that Yi ⊆ Zi. Note that

by the assumption that choice sets are non-nested in condition (ii), Y is a C -solution

if and only if it is both an outer and inner C -solution. Indeed, for the “if” direction,

if Y is an outer and inner C -solution, then for each i, there exist Zi, Z
′
i ∈ Ci(Y ) such

that Zi ⊆ Yi ⊆ Z ′
i, and then the definition of choice structure implies Yi = Zi = Z ′

i. A

product set Y ∈ 2X is a C -base if for all i, we have Yi ⊆
⋂

Ci(Y ); note that the empty

set is trivially a C -base. We refer to a C -solution that is maximal with respect to set

inclusion as a C -tract, and to one that is minimal with respect to set inclusion as a

C -core.

The analysis will focus on several key properties of choice structures.

Definition 1 C is monotonic if for all Y,Z ∈ X with Y ⊆ Z, all i, and all Z ′
i ∈ Ci(Z),

there exists Y ′
i ∈ C (Y ) such that Y ′

i ⊆ Z ′
i.

9We could define the concept of extended choice structure by imposing only conditions (i) and (iii).
In this case, we can define a corresponding choice structure by selecting the viable sets that are minimal
with respect to set inclusion. If the extended choice structure is monotonic, in the sense of Definition 1,
then this selection is also monotonic, and Proposition 1 on existence and Proposition 26 on uniqueness
of minimal solutions can be applied.
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Definition 2 C is closed if for all Y,Z ∈ X and all collections (Y ′
i )i∈I and (Z ′

i)i∈I

such that Y ′
i ∈ Ci(Y ) and Z ′

i ∈ Ci(Z) for all i, the set
∏

i∈I(Y
′
i ∩ Z ′

i), if nonempty, is

an outer C -solution.

Definition 3 C is hard if for all Y,Z ∈ X and all collections (Y ′
i )i∈I and (Z ′

i)i∈I such

that Y ′
i ∈ Ci(Y ) and Z ′

i ∈ Ci(Z) for all i, we have Y ′
i ∪ Z ′

i ⊆
⋂

Ci

(

∏

j∈I(Yj ∪ Zj)
)

for

all i.

In addition, say C is univalent if the viable choice set is always unique, i.e., for all

i and all Y ∈ X, we have |Ci(Y )| = 1. To understand monotonicity at an intuitive

level, suppose Z ′
i is a viable choice set for player i given Z−i. Then, in a sense, for

every expectation about the choices of other players from Z−i, there is a plausible

response yi ∈ Z ′
i. So, when choice sets of other players are reduced to Y−i, Z ′

i will still

contain plausible responses to choices of other players from Y−i. After collecting these

responses and possibly removing some redundancies, we have a subset Y ′
i ⊆ Z ′

i that is

viable against Y−i. To understand closed choice structures, we consider two products,

Y and Z, and for each player i, viable sets Y ′
i against Y−i and Z ′

i against Z−i. If Y ′
i

contains all plausible response to expectations of other players’ choices from Y−i, and

similarly for Z ′
i, then the intersection Y ′

i ∩ Z ′
i should contain plausible responses to

expectations in the reduced set Y−i ∩Z−i. If this is true for every player, then possibly

after removing some redundancies, we should find a C -solution contained in Y ∩Z. For

hard choice structures, consider choice sets Y ′
i viable against Y and Z ′

i viable against Z.

Then each yi ∈ Y ′
i is, in a sense, a plausible choice given some expectation over Y−i; if

this is so, then yi is also a plausible choice given that all other players choose strategies

in Yj ∪ Zj , and thus we should have y−i ∈ Ci(
∏

j 6=i(Yj ∪ Zj)). Note that if C is hard,

then it is univalent: for all i, all Y , and all Y ′
i ∈ Ci(Y ), we have Y ′

i ⊆
⋂

Ci(Y ) because

C is hard, and since Y ′
i is an arbitrary viable set, this implies Ci(Y ) = {Y ′

i }.

The solutions of one choice structure, C , may be finer than the solutions of another,

C ′, in two ways: first, it may be that every C ′-solution includes some C -solution;

and second, it may be that every C -solution is included in some C ′-solution. If both

statements are true, then we say that C is finer than C ′ (and C ′ is coarser than C ) in

the full sense.

A dominance structure for i is any mapping Di : X → 2Xi×Xi such that for all

8



Y ∈ X,

(1) for all Y ′ ∈ X, Y−i = Y ′
−i implies Di(Y ) = Di(Y

′),

(2) there is at least one set Y ′
i ⊆ Xi satisfying

(2a) there do not exist distinct xi, yi ∈ Y ′
i such that xiDi(Y )yi,

(2b) for all xi ∈ Xi \ Y ′
i , there exists yi ∈ Y ′

i such that yiDi(Y )xi,

(3) for all xi, yi ∈ Xi, if ui(x) > ui(yi, x−i) for all x−i ∈ Y−i, then xiDi(Y )yi.

Here, we interpret the binary relation Di(Y ) as representing player i’s strategic prefer-

ences over Yi given the other players’ choice sets Y−i. The set Y ′
i satisfies internal (resp.

external) stability with respect to Di(Y ) if the condition (2a) (resp. condition (2b))

holds. We say D = (Di)i∈I is a dominance structure if Di is a dominance structure for

each i. A dominance structure D is a binary representation of a choice structure C if

for all i, all Y ∈ X, and all Y ′
i ⊆ Xi, we have Y ′

i ∈ Ci(Y ) if and only if conditions (2a)

and (2b) hold, in which case we say D generates C , and C is binary. In this case, we

may refer to a “C -solution” as a “D-solution” (or an “outer C -solution” as an “outer

D-solution,” or a C -base as a “D-base”) to bring out the dependence on the underlying

dominance structure. Note that (2) is satisfied if, for example, Di(Y ) is acyclic for all i

and all Y , but acyclicity is not necessary; Theorem 1 of Richardson (1953) establishes

that a stable set satisfying internal and external consistency exists if the relation Di(Y )

has no cycles of odd length.

A choice structure C is maximally binary if it is generated by a dominance structure

D such that for all i and all Y , Ci(Y ) consists of the maximal set of Di(Y ), i.e.,

Ci(Y ) =
{

{xi ∈ Yi | for all yi ∈ Yi, not yiDi(Y )xi }
}

.

Note that a maximally binary choice structure is by construction univalent. Moreover,

every univalent choice structure is maximally binary: given any univalent choice struc-

ture C , we can define a dominance structure D so that for all i, all Y ∈ X, and all

xi, yi ∈ Xi, xiDi(Y )yi holds if and only if yi is not a member of the unique set belong-

ing to Ci(Y ). This dominance structure trivially generates C , so the maximally binary

choice structures coincides with the univalent ones. Of course, some choice structures

9



have a more natural (or useful) binary representation, while others are less naturally

formulated this way.

For a monotonic choice structure, C -solutions always exist: if an outer C -solution

Y is minimal with respect to set inclusion, in the sense that there is no other outer

C -solution Z such that Z $ Y , then Y is a C -solution. In fact, it is a simple matter

to extend this result to provide a way of constructing C -solutions containing any given

C -base, as stated in the next proposition. Because the empty set is a C -base, the

proposition does indeed imply that every monotonic choice structure C yields at least

one C -solution; and in fact, it implies that every outer C -solution contains at least one

C -solution.

Proposition 1 Assume the choice structure C is monotonic. If Z is a C -base, and if

Y is an outer C -solution that is minimal among the collection

{

Y ′ ∈ X | Y ′ is an outer C -solution and Z ⊆ Y ′
}

,

then Y is a C -solution.

For later use, we define the mixed extension of a strategic form game Γ as the strategic

form game Γ̃ = (I, (X̃i)i∈I , (ũi)i∈I), where X̃i is the set of probability distributions

(mixed strategies), denoted pi or qi, over Xi; the set X̃ = Πi∈IX̃i consists of strategy

profiles, denoted p or q, in the mixed extension; and ũi is the real-valued function on X̃

defined by

ũi(p) =
∑

x∈X

Πj∈Npj(xj)ui(x).

A mixed strategy Nash equilibrium of Γ is a Nash equilibrium of the mixed extension.

That is, it is a profile p of mixed strategies such that for all i and all qi ∈ X̃i, ũi(p) ≥

ũi(qi, p−i). For pi ∈ X̃i, let σi(pi) = {xi ∈ Xi|pi(xi) > 0} denote the support of pi,

and for p ∈ X̃, let σ(p) = Πi∈Iσi(pi). As usual, σ−i(p−i) = Πj 6=iσj(pj). We will simply

write xi ∈ X̃i for the mixed strategy that places probability one on xi, and given a set

Yi ⊆ Xi, we write Ỹi for the mixed strategies with support contained in Yi.
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3 Binary Choice Structures

In this section, we specialize the framework to binary choice structures, which admit a

rich class of choice structures that have been considered in the literature. Specifically, we

provide an elementary characterization of D-solutions in terms of minimal externally

stable choice sets; we give sufficient conditions for the properties introduced in the

previous section; we propose the monotonic kernel of a dominance structure as a way of

improving a poorly behaved dominance structure; and we provide a basis for comparison

of solutions generated by specific dominance structures introduced in the next section.

3.1 Properties of Dominance Structures

A dominance structure D is transitive (resp. irreflexive) if for all i and all Y ∈ X, D(Y )

is a transitive (resp. irreflexive) relation on Xi. It is monotonic if for all i, all Y,Z ∈ X

with Y ⊆ Z, and all xi, yi ∈ Xi, xiDi(Z)yi implies xiD(Y )yi. In words, monotonicity

means that if xi dominates yi over a set of profiles of strategies of other players, then xi

dominates yi over any smaller set. Before proceeding, we establish an elementary fact

that will be useful in the subsequent analysis: for a monotonic and transitive dominance

structure, a choice set is viable if and only if it is a minimal externally stable set.

Proposition 2 Let D be a dominance structure and C the choice structure generated

by D . For all i, all Y ∈ X, and all Y ′
i ⊆ Xi, if Y ′

i ∈ Ci(Y ), then Y ′
i is minimal with

respect to set inclusion among the sets that are externally stable with respect to Di(Y );

furthermore, the converse holds if D is monotonic and transitive.

As the next proposition shows, the transitive and monotonic dominance structures

generate monotonic choice structures. Thus, with Proposition 1, we can easily generate

a family of choice structures for which C -solutions generally exist; see the next section

for a number of examples. The proof of this result and the next rely critically on

Proposition 2.

Proposition 3 Assume the dominance structure D is transitive and monotonic. Then

the choice structure C generated by D is monotonic.

The dominance structure D is weakly irreflexive if for all i, all xi, yi ∈ Xi, and all

Y ∈ X, xiDi(Y )xi implies yiDi(Y )xi. That is, viewing Di(Y ) intuitively as a ranking,
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irreflexivities can occur only among bottom-ranked strategies. The next proposition

establishes that the choice structure generated by a transitive, monotonic, weakly ir-

reflexive dominance structure is closed.

Proposition 4 Assume the dominance structure D is transitive, monotonic, and weakly

irreflexive. Then the choice structure C generated by D is closed.

A dominance structure D is non-trivial if for all i and all Y ∈ X, there exist

xi, yi ∈ Xi such that not xiDi(Y )yi. Clearly, every irreflexive dominance structure

is non-trivial. The next proposition shows that the above properties of dominance

structures yield hard choice structures.

Proposition 5 Assume the dominance structure D is transitive, monotonic, weakly

irreflexive, and non-trivial. Then the choice structure C generated by D is hard.

3.2 Monotonic Kernels

Although not all dominance structures are monotonic, we can give a general method

for transforming a non-monotonic dominance structure D into a monotonic one, the

monotonic kernel of D , denoted D• and defined as follows: xiD
•
i (Y )yi if and only if

for all Z ∈ X with Z ⊆ Y , there exists zi ∈ Xi such that ziDi(Z)yi. Note that the

relation xiD
•
i (Y )yi does not indicate a relationship that is specific to the pair (xi, yi),

but rather it indicates the status of yi relative to a selection of strategies, one for each

product subset Z ⊆ Y . By construction, the monotonic kernel of a dominance structure

is not only monotonic, but transitive as well, so D•-solutions exist generally, even if the

properties of the original dominance structure are poor. These observations are formal-

ized in the next proposition, which also establishes that monotonic kernels are weakly

irreflexive and that they generate closed and hard choice structures quite generally.

Proposition 6 Let D be a dominance structure. Then the monotonic kernel D• is

transitive, monotonic, and weakly irreflexive, and the choice structure generated by D•

is closed. Furthermore, if D is transitive, weakly irreflexive, and non-trivial, then D•

is non-trivial, and the choice structure it generates is hard.

A potential deficiency of the monotonic kernel is that the notions of internal and

external stability characterizing the D•-solutions are not the natural ones: if C • is the
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choice structure generated by D• and Y ′
i ∈ Ci(Y ), for example, then external stability

of Y ′
i with respect to D•

i (Y ) means that for every xi ∈ Xi \ Y ′
i , there is some yi ∈ Y ′

i

such that yiD
•
i (Y )xi, but this just means that for every product set Z ⊆ Y , we have

ziDi(Z)xi for some zi (not necessarily for zi in Yi). Thus, external stability with respect

to the monotonic kernel does not by definition imply an advantage for the elements of the

player’s choice set. The next proposition establishes that when the original dominance

structure is transitive and weakly irreflexive, the issue is moot: the solutions generated

by the monotonic kernel are characterized by stability conditions that, as desired, confer

an advantage for chosen strategies over unchosen ones.

Proposition 7 Let D be a dominance structure, and let C • be the choice structure

generated by its monotonic kernel. If D is transitive and weakly irreflexive, then for all

i, all Y ∈ X, and all Y ′
i ⊆ Xi, Y ′

i ∈ C •
i (Y ) if and only if

(i) for all xi ∈ Y ′
i , there exists Z ∈ X with Z ⊆ Y such that for all yi ∈ Y ′

i , not

yiDi(Z)xi,

(ii) for all xi ∈ Xi \ Y ′
i and all Z ∈ X with Z ⊆ Y , there exists yi ∈ Y ′

i such that

yiDi(Z)xi.

3.3 Comparing Dominance Structures

A dominance structure D is stronger than another D ′ if for all i and all Y ∈ X,

Di(Y ) ⊆ D ′
i(Y ), i.e., xiDi(Y )yi implies xiD

′
i(Y )yi for all xi, yi ∈ Xi; in this case, we

say that D ′ is weaker than D . For a related notion, we say D subjugates D ′ if for all

i, all Y ∈ X, and all xi, yi ∈ Xi, if yiDi(Y )xi, then there exists zi ∈ Xi \ {xi} such that

ziD
′
i(Y )xi. In words, this means that if yi dominates xi according to Di(Y ), then xi is

also dominated by a strategy (though not necessarily yi) according to Di(Y ). Note that

if D is stronger than D ′ and D ′ is irreflexive, then D subjugates D ′.

Proposition 8 Let D and D ′ be dominance structures. (i) If D is stronger than D ′,

then every D-solution is an outer D ′-solution. (ii) If D subjugates D ′ and D ′ is tran-

sitive, then every D ′-solution is a D-base.

Proposition 8 immediately provides a means for comparing the solutions of different

dominance structures. It follows that if D is stronger than and subjugates D ′, and if
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both dominance structures are transitive and monotonic, then the solutions of D ′ are

finer than the solutions of D in the full sense.

Proposition 9 Let D and D ′ be dominance structures. (i) If D is stronger than D ′,

and if D ′ is transitive and monotonic, then every D-solution includes some D ′-solution.

(ii) If D subjugates D ′, if D ′ is transitive, and if D is transitive and monotonic, then

every D ′-solution is included in some D-solution.

It is apparent that if the original D is irreflexive, then the monotonic kernel D•

subjugates D . Thus, Proposition 9 immediately implies that if D is transitive, then

each D-solution (if any exist) is included in some D•-solution.

4 Special Choice Structures

This section explores a number of specific choice structures of interest. In the first sub-

section, we focus on binary choice structures generated by three dominance structures:

Shapley dominance, weak Shapley dominance, and Nash dominance. The first two of

these dominance structures extend concepts defined by Shapley (1964) for two-player,

zero-sum games: whereas Shapley analyzes the minimal Shapley solution in this smaller

class of games, here we extend the analysis to arbitrary (finite) strategic form games and

to general (not necessarily minimal) solutions. The third dominance structure provides

a choice-theoretic version of pure strategy Nash equilibrium. We note that Shapley

and Nash solutions exist in general, but weak Shapley solutions may not exist in some

games.10 We then define a closely related dominance structure, due to Börgers (1993),

for which solutions do generally exist. The solutions generated by the above dominance

structures are typically weak, but Nash solutions are not unambiguously weaker than

mixed strategy Nash equilibrium: we give an example in which there is a mixed strategy

Nash equilibrium that is disjoint from every Nash solution.

In the second subsection, we define additional dominance structures based on pes-

simistic conjectures, maximin dominance and leximin dominance. Although these dom-

inance structures are not monotonic, we consider their monotonic kernels, which are

10Duggan and Le Breton (1996) show that weak Shapley solutions exist in two-player, zero-sum
games with non-zero off-diagonal payoffs; for these games, there is a unique minimal W -solution, which
is referred to as the “weak saddle.”
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well-behaved. Finally, we consider the logical relationships among the solutions en-

tailed by these dominance structures, and in particular we note that the monotonic

leximin solutions provide a refinement of the Börgers solutions.

In the third subsection, we examine choice structures based on rationalizability and

obtain the point rationalizable strategies of Bernheim (1984) and the rationalizable

strategies of Bernheim (1984) and Pearce (1984). In fact, we show subsequently that

the point rationalizable (resp. rationalizable) strategy profiles correspond to the max-

imal P-solution (resp. R-solution), which is unique. We discuss the related idea of

cautious rationalizability, due to Pearce (1984), and technical difficulties of that so-

lution. Finally, we summarize the logical relationships between the monotonic choice

structures considered, and in particular we note that the rational solutions refine the

Börgers solutions.

In the last subsection, we consider the choice structures induced by mixed versions

of the above dominance structures, in which a player’s choice set is defined by internal

and external stability conditions that permit the player to use mixed strategies. In

particular, the mixed version of Shapley dominance generalizes Duggan and Le Breton’s

(1999, 2001) concept of mixed saddle: whereas that work analyzes the minimal mixed

Shapley saddle of a tournament game, here we extend the analysis to arbitrary (finite)

strategic form games and to general (not necessarily minimal) solutions. Finally, we

explore the logical relationships among the solutions entailed by these choice structures,

and in particular we note that the mixed Shapley solutions refine the Shapley solutions

and coarsen the rational solutions.

4.1 Shapley, Weak Shapley, and Nash Dominance

Three dominance structures of interest are defined next. The first two, Shapley and weak

Shapley dominance, are quite demanding — a dominated strategy must, in a sense, be

rejected — while the third, Nash dominance, is only suggestive — a dominated strategy

can be rejected without harm. In effect, Nash dominance eliminates redundancies from

a player’s choice set.

(1) Nash for all i and all Y , xi Ni(Y ) yi if and only if for all x−i ∈ Y−i, ui(x) ≥

ui(yi, x−i).
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(2) Weak Shapley for all i and all Y , xi Wi(Y ) yi if and only if xi Ni(Y ) yi and not

yi Ni(Y ) xi.

(3) Shapley for all i and all Y , xi Si(Y ) yi if and only if for all x−i ∈ Y−i,

ui(x) > ui(yi, x−i).

Note the connection between N -solutions and pure strategy Nash equilibria: {x} is

a N -solution if and only if x is a pure strategy Nash equilibrium; of course, not all

N -solutions are singletons. Also note that {x} is a S -solution (or W -solution) if

and only if x is a strict Nash equilibrium. Clearly, the three dominance structures

coincide for generic games, where ui(x) 6= ui(y) for all i, x, and y, but in general they

are distinct; see Example 3 below for illustrations of the solutions of these different

dominance structures.

All three dominance structures are transitive, and W and S are irreflexive as well.

Thus, the choice structures generated by Shapley and weak Shapley dominance are

maximally binary, and therefore univalent. Because N violates irreflexivity, it need

not be univalent. The Shapley and Nash dominance structures are monotonic, as their

definitions invoke either all weak or all strict inequalities, so Proposition 3 implies that

the corresponding choice structures are monotonic; in particular, S -solutions and N -

solutions exist.

The next proposition establishes that S -solutions are the weakest possible in our

framework, as every C -solution is contained in an S -solution. The proof is immediate:

if Y is a C -solution, then part (3) in the definition of choice structure implies that Y

is an S -base, and thus Proposition 1 yields an S -solution Z ⊇ Y . Moreover, we show

later that there is a unique S -tract, which is therefore the largest possible solution.

Proposition 10 For every choice structure C , if Y is a C -solution, then there is an

S -solution Z such that Y ⊆ Z.

As well, Propositions 4 and 5 imply that the choice structure generated by S is

closed and hard, but N does not deliver either property generally, as demonstrated in

the following example.
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Example 1 Let |I| = 2 and X1 = X2 = {a, b, c}, with payoffs given below.

a b c

a (1,1) (1,2) (1,1)

b (2,1) (0,0) (2,1)

c (1,1) (1,2) (1,1)

Here, {a, b} × {a, b} and {b, c} × {b, c} are N -solutions, but the product of the inter-

section of choice sets, {b} × {b}, is not an outer N -solution. In addition, letting C be

the choice structure generated by N , we have {a, b} ∈ Ci({a, b}) and {b, c} ∈ Ci({b, c})

for both players, but Xi /∈ Ci(X). Therefore, C is neither closed nor hard.

Next is a counter-example to a general result for W -solutions. It is quite similar

to Samuelson’s (1992) Example 8, where he illustrates the possible inconsistency of

common knowledge of “admissibility” (a generalization of our W -solutions). Following

the example, we will see how existence can be obtained for a dominance structure closely

related to W .

Example 2 Let |I| = 2 and X1 = X2 = {a, b}, with payoffs specified below.

a b

a (2,1) (1,2)

b (1,2) (1,1)

Suppose there is a W -solution Y = Y1 × Y2. If Y2 = {a, b} then Y1 = {a}, but then

Y2 = {b}. If Y2 = {a} then Y1 = {a}, but then Y2 = {b}. Finally, if Y2 = {b} then

Y1 = {a, b}, and then Y2 = {a, b}, a contradiction.

The W -solution sometimes fails to exist because W is not generally monotonic.

Börgers (1993) defines a closely related notion of dominance in his investigation of
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rationality in games when players know only the ordinal preferences of their opponents.

Unlike W , this dominance structure is monotonic.

(4) Börgers for all i and all Y , xi Bi(Y ) yi if and only if for all Z ⊆ Y , there

exists zi ∈ Xi such that zi Wi(Z) yi.

Note that xi Bi(Y ) yi offers grounds that yi be rejected, but not necessarily because xi

should be chosen instead — this relation indicates not an advantage of xi, but only a

deficiency of yi. Nonetheless, B is a well-behaved dominance structure by our criteria:

it is transitive and evidently monotonic, so Propositions 1 and 3 establish existence of

B-solutions. In fact, Börgers dominance is the monotonic kernel of weak Shapley, i.e.,

B = W •, so we see that the dominance notion proposed by Börgers is an example of the

more general monotonic kernel operation applied to a specific notion of dominance.11

The next example illustrates the solutions for the dominance structures of this sub-

section. It suggests a particular nesting of solutions that is confirmed for the general

case in the subsequent discussion.

Example 3 Let I = 2, X1 = {a, b, c}, and X2 = {a, b, c, d, e}, with payoffs specified

below.

a b c d e

a (1,-1) (-1,1) (0,0) (1,-1) (0,-1)

b (-1,1) (1,-1) (0,0) (0,0) (0,0)

c (-1,1) (1,-1) (0,0) (0,1) (0,0)

Here {a, b} × {a, b} is not a N -solution, a W -solution, a B-solution, or an S -solution;

{a, b} × {a, b, c} is a N -solution but not a W -solution, a B-solution, or an S -solution;

{a, b, c}×{a, b, c} is a W -solution but not a solution for the other dominance structures;

11An alternative approach to rectifying weak Shapley dominance is to define player i’s choice set to
consist of xi such that the following does not hold: for each x−i ∈ Y−i, there exists yi with yiNi(Y )xi

and ui(yi, x−i) > ui(x). This choice structure is monotonic, closed, and hard. For reasons of space, we
leave it for future investigation.
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{a, b, c}×{a, b, c, d} is a B-solution but not a solution for the other dominance structures;

and X is an S -solution but not a solution for the other dominance structures.

To compare the solutions generated by these dominance structures, note that Shap-

ley dominance is stronger than weak Shapley, which is stronger than Nash. With Propo-

sition 9, this immediately yields the logical relationships depicted in Figure 1. Here, a

thick arrow from one dominance structure to another indicates that the second is finer

than the first in the full sense: e.g., every Shapley solution contains a Börgers solution,

and every Börgers solution is contained in a Shapley solution. The double arrow indi-

cates that every W -solution is included in some B-solution. Indeed, the latter follows

because W is irreflexive, so its monotonic kernel B = W • subjugates it; since W is

transitive and B is transitive and monotonic, the claim follows from Proposition 9. A

dashed arrow indicates that the solutions of the second dominance structure are finer

than the solutions of the first in the sense that, e.g., every W -solution includes some

N -solution; because N is transitive and monotonic, this follows directly from Propo-

sition 9. Further relationships that follow by transitivity are obvious and omitted from

the figure for simplicity.

In addition to the relationships described above, Figure 1 indicates that every N -

solution includes the support σ(p) of at least one mixed strategy equilibrium; and it

indicates that for every mixed strategy equilibrium p, there is at least one B-solution

that contains the support set σ(p). These connections are established formally in the

following proposition.

Proposition 11 (i) If Y is an outer N -solution, then there is a mixed strategy Nash

equilibrium p such that σ(p) ⊆ Y . (ii) If p is a mixed strategy Nash equilibrium, then

there is a B-solution Y ⊇ σ(p).
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Proof: (i) Let Y be an outer N -solution, and consider the restricted game in which

each player’s strategy set is Yi and payoffs are given by ui restricted to Y , and let p

be a mixed strategy Nash equilibrium of this game. If it is not an equilibrium of the

unrestricted game, there is some i and some yi ∈ Xi \ Yi such that ũi(yi, p−i) > ũi(p).

Since Y is an outer N -solution, there exists some xi ∈ Yi such that xiNi(Y−i)yi,

but then ũi(xi, p−i) > ũi(p), and p is not an equilibrium of the restricted game, a

contradiction. (ii) We claim that σ(p) is a B-base, for otherwise there exist i and

Yi ∈ Ci(σ(p)) such that σi(pi) \ Yi 6= ∅, where C is the choice structure generated

by B. Note that because B is transitive and monotonic, Proposition 3 implies that

C is monotonic. Letting zi ∈ σi(pi) \ Yi, external stability yields yi ∈ Yi such that

yiBi(σ(p))zi. In particular, there exists xi ∈ Xi such that xiWi(σ(p))yi, but then

ũi(xi, p−i) > ũi(zi, p−i), contradicting the fact that zi is a best response to p−i. Thus,

σ(p) is a B-base, and Proposition 1 yields a B-solution Y ⊇ σ(p).

The next example shows it is not generally the case that the support of every mixed

strategy equilibrium is included in an N -solution. In fact, in the example there is a

mixed strategy equilibrium with support disjoint from every N -solution. Thus, we can

use N -solutions to refine mixed strategy Nash equilibria, effectively eliminating those

in which redundant strategies are used: every game has at least one N -solution and

every N -solution includes the support of at least one Nash equilibrium, so we can retain

these equilibria and discard the others.

Example 4 Let |I| = 2, X1 = {a, b}, and X2 = {a, b, c, d}, with payoffs given below.

a b c d

a (1,0) (1,10) (1,11) (1,-1)

b (1,10) (1,0) (1,-1) (1,11)

Here, the mixed strategies that place probability one half each on a and b constitute a

mixed strategy Nash equilibrium with minimal support, {a, b} × {a, b}. However, there

is no N -solution intersecting {a, b} × {a, b}: the only N -solutions are {a} × {c} and

{b} × {d}.
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4.2 Maximin and Leximin Dominance

We next define a dominance structure that reflects pessimistic assessments: one strategy

is strategically advantaged over another if it does better in the worst case scenario,

subject to the constraint that other players’ strategies are selected from their choice

sets.

(5) maximin for all i and all Y , xiMi(Y )yi if and only if

min
y−i∈Y−i

ui(xi, y−i) > min
y−i∈Y−i

ui(yi, y−i).

A refinement of the latter dominance structure is defined is next. Given two real-

valued functions v and v′ defined on any subset Z−i ⊆ X−i, let Z−i(v, v′) = {y−i ∈

Z−i|v(y−i) 6= v′(y−i)}. We write vLi(Z−i)v
′ if Z−i(v, v′) 6= ∅ and min{v(z−i)|z−i ∈

Z−i(v, v′)} > min{v′(z−i)|z−i ∈ Z−i(v, v′)}.

(6) leximin for all i and all Y , xiLi(Y )yi if and only if

ui(xi, ·)Li(Y−i)ui(yi, ·).

This dominance structure is similar to M , but in case the minimum payoffs of zi and

yi over Y−i are tied, we compare their next lowest payoffs, or if those are tied, the

next lowest, and so on. These dominance structures are irreflexive and transitive, so

the choice structures generated by them are rational and univalent, but the dominance

structures are not generally monotonic, and their corresponding solutions may fail to

exist, as illustrated in the next example.

Example 5 Let |I| = 2, X1 = {a, b}, and X2 = {a, b}, with payoffs given below.

a b

a (1,2) (1,1)

b (1,1) (0,2)

Here, in any M - or L -solution, if row’s choice set contains b, and then column’s contains

b, and then row’s contains a, and then column’s contains a, but then row cannot choose
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b; and if row’s choice set contains a, then column’s contains a, and then row’s contains

b. Thus, there is no solution for either dominance structure.

In response to this failure, we can consider the monotonic kernels, M • and L •, which

by Proposition 1 and 6 rectify the existence problem. These dominance structures are

defined explicitly as follows.

(7) monotonic maximin for all i and all Y , xiM
•
i (Y )yi if and only if for all

Z ∈ X with Z ⊆ Y , there exists zi ∈ Xi such that

min
y−i∈Z−i

ui(zi, y−i) > min
y−i∈Z−i

ui(yi, y−i).

(8) monotonic leximin for all i and all Y , xiL
•
i (Y )yi if and only if for all Z ∈ X

with Z ⊆ Y , there exists zi ∈ Xi such that

ui(zi, ·)Li(Z−i)ui(yi, ·).

Because M is transitive and irreflexive, Proposition 7 implies that the choice structure

generated by M • is characterized by appropriate internal and external stability condi-

tions, and likewise for L •. By Proposition 6, these monotonic kernels are transitive,

monotonic, weakly irreflexive, and non-trivial; and the choice structures they generate

are closed and hard.12 Thus, because M and L are irreflexive, these dominance struc-

tures are subjugated by their respective monotonic kernels, and Proposition 9 implies

that every M -solution (if any) is included in some M •-solution, and every L -solution

(if any) is included in some L •-solution.

Note that Shapley dominance is stronger than (and subjugates) monotonic maximin,

so Proposition 9 implies that M • is finer than S in the full sense. As well, Börgers

dominance is stronger than (and subjugates) monotonic leximin, so that L • is finer than

B in the full sense. Figure 2 indicates the logical relationships among the transitive,

monotonic dominance structures defined above. The next example illustrates that an

12The definitions of monotonic maximin and monotonic leximin suggest a family of well-behaved
structures. For example, we could modify monotonic maximin by replacing “min” with “max” in the
definition of M

•. Or we could require that the maximum and minimum payoff of zi over Z−i are greater
than the maximum and minimum payoff, respectively, of yi over Z−i. Or we could require that for each
Z−i, there exist zi and z′

i such that the minimum payoff of zi over Zi is higher than the minimum of
yi, and the maximum of z′

i over Z−i is higher than the maximum of yi.
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M •-solution, in contrast to an L •-solution, need not be included in a B-solution; in-

deed, it suggests that the internal stability requirement imposed by monotonic maximin

dominance may be unreasonably weak.

Example 6 Let |I| = 2, X1 = {a, b}, and X2 = {a, b, c}, with payoffs given below.

a b c

a (0,1) (0,0) (0,0)

b (0,0) (0,1) (0,0)

Here, {a, b} × {a, b, c} is an M •–solution, but {a, b} × {a, b} is the unique B-solution.

The next example shows that N -solutions and B-solutions are not generally in-

cluded within L •- or even M •-solutions.

Example 7 Let |I| = 2, X1 = {a, b}, and X2 = {a, b, c}, with payoffs given below.

a b c

a (1,-1) (0,0) (0,-2)

b (0,1) (1,0) (0,2)

Here, {a, b} × {a, b, c} is an N -solution and a B-solution, but it is not an M •- or

L •-solution, because the lowest payoff to column player from a is less than the lowest
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from b when row player’s choice set is {a} or {a, b}, and it is less than the payoff from

c when row player’s choice set is {b}.

Clearly, a singleton Y = {y} is an M •-solution if and only if it is an L •-solution,

which holds if and only if y is a strict Nash equilibrium. Furthermore, it is easily

seen that if y is a Nash equilibrium, then it is contained in an M •-solution and in an

L -solution: if y is a Nash equilibrium, then {y} is an M •-base and an L •-base, so

the claim follows from Proposition 1. In general, however, it is not possible to state

a close relationship between mixed strategy equilibria and the solutions generated by

these choice structures. In the next example, there is an M •-solution and L •-solution

disjoint from the support of the unique mixed strategy equilibrium. Furthermore, this

equilibrium is in pure strategies, so it comprises an N -solution.

Example 8 Let |I| = 2 and X1 = X2 = {a, b, c}, with payoffs given below.

a b c

a (0,0) (-1,0) (3,0)

b (0,-1) (0,-6) (0,0)

c (0,3) (-6,4) (4,0)

Here, (a, a) is a Nash equilibrium, and it is unique among all mixed strategy equilibria,

yet {b, c} × {b, c} is an M •- and L •-solution.

In the latter example, the set X it itself an M •- and L •-solution, and it contains the

unique Nash equilibrium. The next example shows that there can be a mixed strategy

equilibrium with support set disjoint from the unique M •- and L •-solution.

Example 9 Let I = 2, X1 = {a, b}, and X2 = {a, b, c, d, e}, with payoffs specified
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below.

a b c d e

a (0,1) (0,-1) (0,2) (0,-3) (0,0)

b (0,-1) (0,1) (0,-3) (0,2) (0,0)

Here, the mixed strategies that place probability one half each on a and b form an equi-

librium. But {a, b} × {a, b} is not contained in any M •-solution (or any L •-solution),

because the lowest payoff for column player from a is less than the lowest payoff from e

when row player’s choice set is {a, b}; it is less than the payoff from c when row player’s

choice set is {a}; and it is less than the payoff from d when row player’s choice set is

{b}. In fact, the unique M •- and L •-solution is {a, b} × {c, d, e}.

4.3 Choice via Rationalizability

We initially focus on pure strategies only. Given Y , let BPi(Y ) denote the set of i’s

pure strategy best responses to pure strategy profiles y−i ∈ Y−i. That is, xi ∈ BPi(Y )

if and only if there exists y−i ∈ Y−i such that

ui(xi, y−i) = max
yi∈Xi

ui(yi, y−i).

We say Y is a point rationalizable set if Yi = BPi(Y ) for all i, i.e., it is a fixed point of

Bernheim’s (1984) operator λ. A strategy xi is then point rationalizable if xi ∈ Yi for

some point rationalizable set Y . Consider the following choice structure.

(9) Point Rational for all i and all Y , Pi(Y ) = {BPi(Y )}.

Clearly, a set Y is point rationalizable if and only if Yi ∈ Pi(Y ) for all i, i.e., Y is a

P-solution. Bernheim’s (1984) Proposition 3.1 shows that there is a unique P-solution

that is maximal with respect to set inclusion, i.e., there is a unique P-tract, and it

follows that the point rationalizable strategy profiles coincide with this unique P-tract;

we obtain this uniqueness result as a special case of the analysis in the next section.

The point rational choice structure P is obviously univalent. The next proposition

establishes that it is monotonic, closed, and hard. An implication is the well-known

property that point rational solutions generally exist.
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Proposition 12 The point rational choice structure P is monotonic, closed, and hard.

While straightforward to prove directly, this proposition can be easily proven by

defining the dominance structure Dp as follows: for all i, all Y ∈ X, and all xi, yi ∈ Xi,

xiD
p
i (Y )yi if and only if yi /∈ BPi(Y ). Since Y is a P-solution if and only if it is a Dp-

solution, this shows that, in a trivial sense, the point rational choice structure (as with

any univalent choice structure) is maximally binary. The usefulness of this observation

in the present context is that the dominance structure Dp is obviously transitive, mono-

tonic, weakly irreflexive, and non-trivial. Thus, Propositions 3–5 immediately deliver

the above proposition.

The previous choice structure focussed on best responses to pure strategy profiles,

but we can easily extend the concept to allow for best responses to mixed strategy

profiles, delivering the rationalizable strategies of Bernheim (1984) and Pearce (1984).

Given Y ∈ X, let BRi(Y ) denote the set of i’s pure strategy best responses to mixed

strategy profiles p−i ∈ Ỹ−i. That is, xi ∈ BRi(Y ) if and only if there exists p ∈ Ỹ such

that

ũi(xi, p−i) = max
yi∈Xi

ũi(yi, p−i).

We say Y is a rationalizable set if Yi = BRi(Y ) for all i, i.e., it is a fixed point of

Bernheim’s (1984) operator Λ. In the terminology of Basu and Weibull (1991), the

rationalizable sets are precisely the tight CURBS. A strategy xi is then rationalizable if

xi ∈ Yi for some rationalizable set Y . We can consider choice based on rationalizability

using the following choice structure.

(10) Rational for all i and all Y , Ri(Y ) = {BRi(Y )}.

A set Y is rationalizable if and only if Yi ∈ Ri(Y ) for all i, i.e., Y is an R-solution.

Using the fact, proved in Bernheim’s (1984) Proposition 3.2 or (essentially) Pearce’s

(1984) Proposition 2, that there is a unique R-tract, it follows that the rationalizable

strategy profiles coincide with this unique R-tract; we obtain this uniqueness result as

a special case of the analysis in the next section.

The rational choice structure is univalent, and as the next proposition establishes, it

is monotonic, closed, and hard. An implication is the well-known property that rational

solutions generally exist.

26



Proposition 13 The rational choice structure R is monotonic, closed, and hard.

As with Proposition 12, the result is easily proven by defining the dominance struc-

ture Dr as follows: for all i, all Y ∈ X, and all xi, yi ∈ Xi, xiD
r
i (Y )yi if and only if

yi /∈ BRi(Y ). A set Y is an R-solution if and only if it is a Dr-solution, and Dr is tran-

sitive, monotonic, weakly irreflexive, and non-trivial. Thus, Propositions 3–5 deliver

the above proposition.

Pearce (1984) defines a related type of rationalizability that roughly combines ra-

tionalizability with iterative elimination of weakly dominated strategies. He defines the

“cautious rationalizable” strategy profiles as those remaining after iterative deletion

of any strategies that are not a best response to a strategy profile that is completely

mixed over the possible strategies of the other players. More precisely, define the se-

quence Y 1, Y 2, . . . such that Y 1 = X and for all k, Y k =
∏

i∈I Y k
i , where Y k

i consists of

all strategies in Y k−1

i that are best responses to a mixed strategy profile p−i satisfying

σ−i(p−i) = Y k−1

i . For high enough k, we have Y k = Y k+1, and this fixed point consists

of all cautious rationalizable strategy profiles. We approximate these notions using the

following choice structure, where given Y ∈ X, we denote by Ỹ ◦ the mixed strategy

profiles p with support equal to Y , i.e., σ(p) = Y .

(11) Cautious Rational for all i and all Y , R◦
i (Y ) = {BRi(Ỹ

◦)}.

Thus, xi ∈ R◦
i (Y ) if xi is a best response to some strategy profile completely mixed

on Y−i. Pearce’s (1984) Lemma 4 and Myerson’s (1991) Theorem 1.7 show that when

|I| = 2, xi /∈ BRi(Ỹ
◦) if and only if yiWi(Y )xi for some yi, and therefore R◦-solutions

are equivalent to W -solutions in two-player games. It follows that the R◦-solutions

inherit the difficulties of W -solutions. Indeed, R◦ is transitive but not monotonic, and

Example 2 demonstrates that R◦-solutions need not exist. This points to an important

restriction in Pearce’s (1984) definition of cautious rationalizability: at each step in the

sequence Y 1, Y 2, . . . , it is critical that the best response set Y k is limited to strategies

in Y k−1, rather than allowing all best responses to profiles completely mixed over Y k−1.

This is illustrated in Example 2, where the first round of deletion removes strategy b

for row player, and the second round of deletion removes strategy a for column player,

leaving the single profile (a, b); now, b is also a best response for row player, but this

strategy is discarded in Pearce’s algorithm.
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Figure 3: Logical relationships

Before moving to the logical relationships between P- and R-solutions and the

solutions introduced in the previous subsections, we note that an R◦-solution is always

an R-base; thus, Proposition 1 implies that if an R◦-solution exists, then it is included

in an R-solution. The next example shows, however, that an R◦-solution need not

include a P-solution.

Example 10 Let |I| = 2, X1 = {a, b}, and X2 = {a, b}, with payoffs specified below.

a b

a (2,0) (1,0)

b (1,0) (1,0)

Here, {a} × {a, b} is an R◦-solution, but there is no P-solution included in it: in any

P-solution Y , a and b must both belong to column player’s choice set, but then, since

b is a best response for row player to b, a and b must belong to row player’s choice set,

and therefore, Y = {a, b} × {a, b}.

Figure 3 depicts the relationships among the transitive, monotonic dominance struc-

tures and the rational and point rational choice structures. First, note that BPi(Y ) ⊆

BRi(Y ) in general, which implies that every R-solution is an outer P-solution, and

every P-solution is an R-base. Thus, Proposition 1 implies that the P-solutions are

finer than the R-solutions in the full sense. Next, note that every B-solution is an outer
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R-solution. Indeed, let Y be a B-solution, and note every xi ∈ BRi(Y ) is a best re-

sponse to some mixed strategy profile p with σ(p) ⊆ Y , so there is no yi ∈ Xi such that

yiWi(σ(p))xi. It follows that xi ∈ Yi, and therefore BRi(Y ) ∈ Ri(Y ) and BRi(Y ) ⊆ Yi,

as claimed. By a similar argument, every R-solution is a B-base, and then Proposition

1 implies that the R-solutions are finer than the B-solutions in the full sense. To see

that every L •-solution is an outer P-solution, let Y be a L •-solution, and note that

every xi ∈ BPi(Y ) is a best response to some z ∈ Y , and setting Z−i = {z−i}, there

is no yi ∈ Xi such that ui(yi, ·)Li(Z−i)ui(xi, ·). It follows that xi ∈ Yi, and therefore

BPi(Y ) ∈ Pi(Y ) and BPi(Y ) ⊆ Yi, as required. By a similar argument, every P-

solution is an L •-base, and then Proposition 1 implies that the P-solutions are finer

than the L •-solutions in the full sense.

Like S -solutions and B-solutions, R-solutions are coarser than mixed strategy Nash

equilibrium in the full sense, as the next proposition states.

Proposition 14 (i) If Y is an outer R-solution, then there is a mixed strategy Nash

equilibrium p such that σ(p) ⊆ Y . (ii) If p is a mixed strategy Nash equilibrium, then

there is an R-solution Y ⊇ σ(p).

Proof: To prove (i), let Y be an outer R-solution, so for each i, there exists Zi ∈ Ri(Y )

with Zi ⊆ Yi, or equivalently, BRi(Y ) ⊆ Yi. Consider the restricted game in which

each player’s strategy set is Zi and payoffs are given by ui restricted to Z. Let p be

a mixed strategy Nash equilibrium of this game. If p is not an equilibrium of the

unrestricted game, then there exist i and xi ∈ Xi \ Zi such that ũi(xi, p−i) > ũi(p).

Since xi is not a best response to any mixed strategy profile with support Z, it follows

that any best response to p, denoted yi, satisfies ũi(yi, p−i) > ũi(xi, p−i) > ũi(p).

Since yi ∈ Zi, however, this contradicts the assumption that p is an equilibrium of

the restricted game. We conclude that p is an equilibrium of the unrestricted game,

and then we have an equilibrium such that σ(p) ⊆ Y , as required. To prove (ii), it

suffices to note that the support σ(p) of a mixed strategy equilibrium p is a R-base.

Indeed, because each strategy in the support of pi is a best response to p, it follows

that σi(pi) ⊆ BRi(σ(p)) =
⋂

Ri(σ(p)). Then Proposition 1 implies that there is a

R-solution Y ⊇ σ(p), as required.
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That the R-solutions and N -solutions are not generally nested follows from two

examples. The first demonstrates that an R-solution can contain all N -solutions as

proper subsets.

Example 11 Let |I| = 2 and X1 = X2 = {a, b, c, d}, with payoffs given below.

a b c d

a (0,0) (1,-1) (1,-1) (-1,1)

b (-1,1) (0,0) (1,-1) (-1,1)

c (-1,1) (-1,1) (0,0) (1,-1)

d (1,-1) (1,-1) (-1,1) (0,0)

Here, {a, b, c, d}×{a, b, c, d} is an R-solution, but it is not a N -solution, since aN1(X2)b.

In fact, aW1(X2)b, and it is not a W -solution either.

The second example demonstrates that an N -solution can contain the unique R-

solution as a proper subset; it exploits the fact that a pure strategy may fail to be a

best response to any mixed strategy, yet not be weakly dominated by any other pure

strategy.

Example 12 Let |I| = 2, X1 = {a, b}, and X2 = {a, b, c}, with payoffs given below.

a b c

a (0,4) (1,1) (0,2)

b (1,1) (0,4) (0,2)

Here, {a, b}×{a, b, c} is the unique N -solution, but strategy c is strictly dominated for

column player by the mixed strategy that places probability one half each on a and b,

so the unique R-solution is {a, b} × {a, b}.
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Finally, note that in the preceding example, X = {a, b}×{a, b, c} is the unique L •-

solution; in particular, the lowest payoff to column player from strategy c is higher than

the lowest payoff from a and b when row player’s choice set is {a, b}. And in Example 9,

all strategies are rationalizable, so X is a R-solution, while the unique M •-solution is

the proper subset {a, b}×{c, d, e}. Thus, no general inclusion relationship holds among

the pessimistic solutions and the rational solutions.

4.4 Mixed Choice Structures

We now extend the Shapley, weak Shapley, and Nash dominance structures to allow

for the possibility that players use mixed strategies in constructing their choice sets. A

convenient way of constructing these extensions is to define a notion of binary repre-

sentation to allow for strategic preferences between mixed and pure strategies, and to

modify internal and external stability to account for the possibility that a player may mix

over her choice set. A mixed dominance structure for i is any mapping D̃i : X → 2X̃i×Xi

such that for all Y ∈ X,

(1) for all Y ′ ∈ X, Y−i = Y ′
−i implies D̃i(Y ) = D̃i(Y

′),

(2) there is at least one set Y ′
i ⊆ X such that

(2a) there do not exist xi ∈ Y ′
i and pi ∈ Ỹ ′

i (not degenerate on xi) such that

piD̃i(Y )xi,

(2b) for all xi ∈ Xi \ Y ′
i , there exists pi ∈ Ỹ ′

i such that piD̃i(Y )xi,

(3) for all xi, yi ∈ Xi, if ui(x) > ui(yi, x−i) for all x−i ∈ Y−i, then xiD̃i(Y )yi.

Then D̃ = (D̃i)i∈I is a mixed dominance structure if D̃i is a mixed dominance structure

for each i, and D̃ is a mixed binary representation for a choice structure C if for all i,

all Y ∈ X, and all Y ′
i ⊆ Xi, we have Y ′

i ∈ Ci(Y ) if and only if conditions (2a) and (2b)

hold, in which case D̃ generates C , and C is mixed binary.

We define three such choice structures by taking mixed versions of Nash, weak

Shapley, and Shapley dominance.

(12) Mixed Nash for all i and all Y , pi
˜Ni(Y ) xi if and only if for all x−i ∈ Y−i,

ui(pi, x−i) ≥ ui(x).

31



(13) Mixed Weak Shapley for all i and all Y , pi W̃i(Y ) xi if and only if for all

x−i ∈ Y−i, ui(pi, x−i) ≥ ui(x), with strict inequality for at least one x−i.

(14) Mixed Shapley for all i and all Y , pi S̃i(Y ) xi if and only if for all x−i ∈ Y−i,

ui(pi, x−i) > ui(x).

Of these mixed dominance structures, Shapley and Nash are monotonic in the sense

that for all i, all Y,Z ∈ X with Y ⊆ Z, all pi ∈ X̃i, and all yi ∈ Yi, pi
˜Ni(Z)yi

implies pi
˜Ni(Y )yi, and piS̃i(Z)yi implies piS̃i(Y )yi. In contrast, mixed weak Shapley

inherits the difficulties of weak Shapley, i.e., the choice structure it generates may violate

monotonicity. In contrast to the pure strategy setting, the monotonic kernel is not an

interesting response to this difficulty, as the mixed version of Börgers dominance (using

the conventions above) would be equivalent to mixed Shapley.

The next result establishes that mixed Shapley dominance is especially well-behaved.

In particular, monotonicity implies that mixed Shapley solutions generally exist.

Proposition 15 The choice structure generated by mixed Shapley dominance is mono-

tonic, closed, and hard.

Proof: Define the dominance structure S ′ as follows: for all i, all Y ∈ X, and all

xi, yi ∈ Xi, xiS
′
i (Y )yi if and only if there exists pi ∈ X̃i such that piS̃i(Y )yi. Note that

the mixed strategy pi in the latter condition can put positive probability on strategies

outside Yi and cannot be degenerate on yi. Let C̃ be the choice structure generated by

S̃ , and let C ′ be the choice structure generated by S ′. We claim that C̃ = C ′. Fix

any i and any Y ∈ X. Consider any Zi ∈ C̃i(Y ), and note that external stability with

respect to S ′
i (Y ) follows immediately: for all xi ∈ Xi \ Zi, there exists pi ∈ Z̃i ⊆ X̃i

such that piS̃i(Y )xi, and therefore piS
′
i (Y )xi. To prove internal stability with respect

to S ′
i (Y ), suppose there exist xi ∈ Zi and p′i ∈ X̃i such that p′iS̃i(Y )xi. Since p′i is

not degenerate on xi, we assume without loss of generality that p′i(xi) = 0. Index the

elements of Xi \Zi as y1
i , . . . , y

K
i . Because Zi is externally stable with respect to S̃i(Y ),

it follows that for each k, there exists pk
i ∈ Z̃i such that pk

i S̃i(Y )yk
i . Now define pi to

be the same as p′i but modified so that if p′i places positive probability on some yk
i , then
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that probability is transferred to pk
i , i.e., for all zi ∈ Xi,

pi(zi) = p′i(zi) +

K
∑

k=1

p′i(y
k
i )pk

i (zi).

Then we have pi ∈ Z̃i and piS̃i(Y )xi, contradicting internal stability of Zi with respect

to S̃i(Y ). Therefore, Zi is internally stable with respect to S ′
i (Y ), and we conclude

that Zi ∈ C ′
i (Y ). Now consider any Z ′

i ∈ C ′
i (Y ), and note that internal stability with

respect to S̃i(Y ) follows immediately: there do not exist xi ∈ Z ′
i and pi ∈ X̃i, nor

therefore pi ∈ Z̃i, such that piS̃i(Y )xi. To prove external stability of Z ′
i with respect to

S̃i(Y ), consider any xi ∈ Xi\Z ′
i. Because Z ′

i is externally stable with respect to S ′
i (Y ),

there exists p′i ∈ X̃i such that p′iS̃i(Y )xi. By a construction similar to that above, we

can transform p′i to a mixed strategy pi ∈ Z̃ ′
i such that piS̃i(Y )xi, as required. We

conclude that Z ′
i ∈ C̃i(Y ), and therefore C̃ = C ′, as claimed. Finally, we observe that

S ′ is monotonic, transitive, weakly irreflexive, and non-trivial. Then Propositions 3–5

imply that C̃ is monotonic, closed, and hard.

The choice structure generated by the mixed Nash dominance structure is monotonic,

as shown next.

Proposition 16 The choice structure generated by mixed Nash dominance is mono-

tonic.

Proof: Let C̃ be the choice structure generated by ˜N . To prove that C̃ is monotonic,

consider any Y,Z ∈ X with Y ⊆ Z, any i, and any Z ′
i ∈ C̃i(Z). Because Z ′

i is externally

stable with respect to ˜Ni(Z), monotonicity of ˜N implies that Z ′
i is externally stable

with respect to ˜Ni(Y ). Let Y ′
i be a set that is maximal with respect to set inclusion

among the subsets of Yi that are externally stable with respect to ˜Ni(Y ). Suppose that

Y ′
i is not internally stable with respect to ˜Ni(Y ), so there exist xi ∈ Y ′

i and pi ∈ Ỹ ′
i

(not degenerate on xi) such that piÑi(Y )xi. Assume without loss of generality that

pi(xi) = 0. We claim that Y ′′
i = Y ′

i \ {xi} is externally stable. Index the elements of Y ′
i

as y1
i , . . . , y

K
i . Consider any yi ∈ Xi \ Y ′′

i . If yi = xi, then we have pi ∈ Ỹ ′′
i such that

pi
˜Ni(Y )yi. If yi 6= xi, then yi /∈ Y ′

i , so there exists qi ∈ Ỹ ′
i such that qiD̃i(Y )yi. Now

define p′i to be the same as qi but modified so that if qi places any probability on xi,
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then that probability is transferred to pi, i.e., for all zi ∈ Xi,

p′i(zi) =

{

qi(zi) + qi(xi)pi(zi) if zi 6= xi

0 if zi = xi.

Then we have p′i ∈ Ỹ ′′
i and p′i

˜Ni(Y )y, as claimed. Thus, Y ′′
i is a proper subset of Y ′

i

that is external stable, a contradiction. We conclude that Y ′
i is indeed internally stable,

which implies that Y ′
i ∈ Ci(Y ). Therefore, C is monotonic.

An immediate implication of Proposition 16, with Proposition 1, is that mixed Nash

solutions exist generally. That mixed Nash dominance does not generally yield a choice

structure that is closed or hard is demonstrated in Example 1, where {a, b}×{a, b} and

{b, c} × {b, c} are Ñ -solutions, as well as N -solutions.

For this reason, we focus on mixed Shapley dominance in the sequel. It is straight-

forward to see that every S -solution is an outer S̃ -solution. Indeed, let C̃ be the choice

structure generated by S̃ , and let Y be an S -solution, so each Yi satisfies external sta-

bility with respect to Si(Y ) and therefore with respect to S̃i(Y ). We then let Y ′
i be

minimal with respect to set inclusion among the subsets of Yi that are externally stable

with respect to S̃i(Y ), and following the procedure in the proof of Proposition 15, we

arrive at Y ′
i ∈ C̃i(Y ). Furthermore, every S̃ -solution is an S -base, and Proposition 1

implies that the mixed Shapley solutions are finer than the Shapley solutions in the full

sense.

Proposition 17 The S̃ -solutions are finer than the S -solutions in the full sense.

The choice structure generated by mixed Shapley dominance is coarser than the

rational choice structure, as the next proposition states.

Proposition 18 The R-solutions are finer than the S̃ -solutions in the full sense.

Proof: We first claim that every S̃ -solution is an outer R-solution. Let Y be a S̃ -

solution, let C be the choice structure generated by R, and consider any i. Note that

Ci(Y ) = {BRi(Y )}. For all xi ∈ Xi \ Yi, external stability of Yi with respect to S̃i(Y )

yields pi ∈ Ỹi such that piS̃i(Y )xi, so xi is not a best response to any mixed strategy

profile with support in Y . Therefore, BRi(Y ) ⊆ Yi, and Y is an outer R-solution, as

claimed. Next, we claim that every R-solution is a S̃ -base. Let Y be an R-solution, let
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C̃ be the choice structure generated by S̃ , and consider any i and any Y ′
i ∈ C̃i(Y ). Note

that Yi = BRi(Y ). For all xi ∈ Xi \ Y ′
i , external stability of Y ′

i with respect to S̃i(Y )

yields pi ∈ Ỹ ′
i such that piS̃i(Y )xi, which implies xi /∈ BRi(Y ). Therefore, Yi ⊆ Y ′

i ,

and Y is an S̃ -base, as claimed. Then the result follows from Proposition 1.

The close correlation between the rational choice structure and the choice structure

generated by mixed Shapley dominance becomes exact in two-player games. The proof

of the next proposition is straightforward, using Pearce’s (1984) Lemma 2 or Myerson’s

(1991) Theorem 1.6, and is omitted. Duggan and Le Breton (2001) show that in tour-

nament games, there is a unique S̃ -solution, i.e., the mixed saddle, and that the choice

set pinned down by this solution is the top cycle set of the tournament; thus, we find

the same correspondence between the top cycle and the minimal rationalizable set of a

tournament game.

Proposition 19 Let C̃ be the choice structure generated by mixed Shapley dominance.

If |I| = 2, then C̃ = R.

Less obvious is that when there are just two players, the Börgers solutions refine

the mixed Shapley solutions. The proof proceeds by defining the dominance structure

Ds as follows: for all i, all Y ∈ X, and all xi, yi ∈ Xi, xiD
s
i (Y )yi if and only if there

exists pi ∈ X̃i such that piS̃i(Y )yi. Note that Y is an S̃ -solution if and only if it is a

Ds-solution. Moreover, Ds is transitive and monotonic. Then the result follows from

Proposition 9 if we can show that Börgers dominance is stronger than Ds-dominance.

Proposition 20 If |I| = 2, then the S̃ -solutions are finer than the B-solutions in the

full sense.

Proof: In line with the above discussion, it suffices to show that B is stronger than Ds.

Consider player 1, without loss of generality, and any x1, y1 ∈ X1 such that x1B1(Y )y1.

Then there exists z0
1 ∈ X1 such that z0

1W1(Y )y1. So there is a set Y 0
2 $ Y2 such that

for all y2 ∈ Y2 \ Y 0
2 , we have u1(z

0
1 , y2) > u1(y1, y2), and for all y2 ∈ Y 0

2 , we have

u1(z
0
1 , y2) = u1(y1, y2). If Y 0

2 is nonempty, then there also exists z1
1 ∈ X1 such that

z1
1W1(Y1 × Y 0

2 )y1. So there is a set Y 1
2 $ Y 0

2 such that for all y2 ∈ Y 0
2 \ Y 1

2 , we have

u1(z
1
1 , y2) > u1(y1, y2), and for all y2 ∈ Y 2

1 , we have u1(z
1
1 , y2) = u1(y1, y2). Define
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the mixed strategy p1
1 for player 1 by placing sufficiently small probability ǫ1 > 0 on

z1
1 and the remaining probability 1 − ǫ1 on z0

1 , so that for all y2 ∈ Y2 \ Y 1
2 , we have

u1(p
1
1, y2) > u1(y1, y2), and for all y2 ∈ Y 1

2 , we have u1(p
1
1, y2) = u1(y1, y2).

Proceeding inductively, suppose we are given Y 0
2 % Y 1

2 % · · · % Y k−1

2
with Y k−1

2

nonempty and pk−1
1

such that for all y2 ∈ Y2 \ Y k−1
2

, we have u1(p
k−1
1

, y2) > u1(y1, y2),

and for all y2 ∈ Y k−1

2
, we have u1(p

k−1

1
, y2) = u1(y1, y2). Select zk

1 ∈ X1 such that

zk
1W1(Y1 × Y k−1

2
)y1. Then there is a set Y k

2 $ Y k−1
2

such that for all y2 ∈ Y k−1
2

\ Y k
2 ,

we have u1(z
k
1 , y2) > u1(y1, y2), and for all y2 ∈ Y k−1

2
, we have u1(z

k
1 , y2) = u1(y1, y2).

Again, choose ǫk > 0 sufficiently small, and let pk
1 be the mixture pk

1 = ǫkz
k
1 +(1−ǫk)pk−1

1

with weight ǫk on zk
1 and the remaining weight on pk−1

1
. Then for all y2 ∈ Y2 \ Y k

2 , we

have u1(p
k
1 , y2) > u1(y1, y2), and for all y2 ∈ Y k

2 , we have u1(p
k
1, y2) = u1(y1, y2).

Since X2 is finite, there is a k such that Y k+1
2

= ∅, and then pk
1S̃1(Y )y1, and we

conclude that x1D
s
1 (Y )y1, as required.

The next example shows that in games with three or more players, the preceding

result does not hold.

Example 13 Let |I| = 3, X1 = {a, b, c, d}, X2 = {U,D}, and X3 = {L,R}. We let

the payoffs of players 2 and 3 be constant, and we specify the payoffs of player 1 in the

following four matrices, which correspond to strategies a, b, c, and d, respectively.

L R
U 1 0
D 0 1

L R
U 0 −2
D 1 0

L R
U 0 1
D −2 0

L R
U 0 0
D 0 0

Note that d is Börgers dominated: a weakly dominates d over X2 × X3, {U} × X3,

{D} × X3, X2 × {L}, and X2 × {R}, and it is a better response than d to (U,L), and

(D,R), while b is a better response to (D,L), and c is a better response to (U,R). Thus,

the unique B-solution is {a, b, c} × {U,D} × {L,R}. But X is an S̃ -solution, and in

particular, there is no mixed strategy p1 such that p1S̃1(X)d. To see this, let p1,b and

p1,c be the probabilities on strategies b and c, and simply note that p1,b(1)+p1,c(−2) > 0

and p1,b(−2) + p1,c(1) > 0 are inconsistent.

The relationships between mixed Shapley and the monotonic choice structures de-

fined in previous sections are summarized in Figure 4. Note that a mixed Shapley
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Figure 4: Logical relationships

solution can be a proper superset of all B-solutions, as illustrated in Example 13, and

of all M •-solutions, as illustrated in Example 9 (where X is a S̃ -solution). Further-

more, the unique mixed Shapley solution can itself be a proper subset of a unique

N -solution and a unique L •-solution, as illustrated in Example 12 (where X is the

unique N -solution and the unique L •-solution).

5 Uniqueness of Solutions

In this section, we turn to uniqueness of C -solutions for various choice structures.

Clearly, uniqueness will not obtain generally: if x and y are distinct strict Nash equilib-

ria, then {x} and {y} are C -solutions for every choice structure. Even when multiplicity

occurs, however, it may yet be that there is a unique solution that is maximal with re-

spect to set inclusion, i.e., the C -tract may be unique. We show that every monotonic,

hard choice structure admits a unique maximal solution, a result that applies to the

Shapley, Börgers, monotonic maximin, monotonic leximin, point rational, rational, and

mixed Shapley choice structures. We provide an iterative procedure to calculate these

sets and demonstrate invariance with respect to the details of the iterative procedure,

and we show that the unique C -tract corresponds to the possible strategy profiles under

common knowledge of the choice structure. These results imply the well-known fact

that iterative elimination of strictly dominated strategies is independent of the order of

elimination, and they yield characterizations of the rationalizable strategy profiles due to

Bernheim (1984) and Pearce (1984). Moreover, relying on Börgers (1993), they provide

a characterization of the strategy profiles implied by common knowledge of the players’
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ordinal preferences and rationality for some compatible von Neumann-Morgenstern pref-

erences over lotteries. The applications to mixed Shapley and to monotonic maximin

and leximin provide novel results for these dominance structures.

For a special class of games possessing a “safe” equilibrium (including all two-player,

zero-sum games), we moreover establish uniqueness of the minimal C -solution, or C -

core, for coarsenings of the rational choice structure: an implication is that in such

games, there is a unique minimal Shapley solution, Börgers solution, mixed Shapley

solution, and rational solution. Uniqueness of the Shapley set generalizes Shapley’s

(1964) result for the saddle of a two-player, zero-sum game, while uniqueness of the

mixed Shapley set generalizes the results of Duggan and Le Breton (1999, 2001) for the

mixed saddle of a tournament game. Uniqueness of the rational set shows that for the

class of equilibrium safe games, there is a uniquely tightest prediction consistent with

common knowledge of the players’ preferences over lotteries, of rationality given those

preferences, and of the players’ choice sets themselves. The result for the Börgers set

has similar implications, weakening common knowledge of von Neumann-Morgenstern

preferences to common knowledge of ordinal preferences.

5.1 Maximal Solutions

We first focus on uniqueness of C -tracts. The importance of our uniqueness results, as

shown in Proposition 24 at the end of this subsection, stems from common knowledge

considerations: under broad conditions, the unique C -tract describes the possible out-

comes of a game when it is common knowledge among the players that each player i’s

choice set is viable relative to C , but the players’ choice sets themselves are not common

knowledge. Thus, although the assumption that the players’ choice sets are common

knowledge is implicit in the definition of C -solution, we can drop this assumption by

analyzing the properties of the C -tract.

Proposition 21 Assume the choice structure C is monotonic and hard. Then there is

a unique maximal C -solution.

Proof: Existence follows from Proposition 1. For uniqueness, suppose there are distinct

C -tracts Y and Z. Let Wi = Yi∪Zi for all i, and define W =
∏

i∈I Wi. Since C is hard,

and Yi ∈ Ci(Y ) and Zi ∈ Ci(Z) for all i, it follows that Wi ⊆
⋂

Ci(W ) for all i. Thus,
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W is a C -base, and then Proposition 1 yields a C -solution W ′ ⊇ W % Y , contradicting

maximality of Y .

An implication of Proposition 21 is that uniqueness of maximal solutions in finite

strategic form games holds for the Shapley, Börgers, monotonic maximin, monotonic

leximin, point rational, rational, and mixed Shapley choice structures. Furthermore,

it holds for any choice structure generated by transitive, monotonic, weakly irreflexive,

and non-trivial dominance structure. Of the monotonic choice structures defined in

previous sections, the only one that is not generally hard is Nash dominance, and as a

consequence, some games admit multiple Nash-tracts: for example, in any game with

constant payoffs, every singleton {y} is a Nash-tract.

The next proposition provides an iterative procedure for computing the C -tract of

any monotonic, hard choice structure. In general, a sequence Y 1, Y 2, . . . ∈ X of product

sets of strategies is a C -sequence if Y 1 = X, and for all k ≥ 2, Y k =
∏

i∈I Y k
i , where

Y k
i ∈ Ci(Y

k−1) for all i. Note that if C is univalent, then it admits a unique C -sequence,

but our construction is more general. The sequence is a proper C -sequence if there exists

k such that Y k = Y k+1, and for all ℓ < k, we have Y ℓ $ Y ℓ+1. The next proposition

establishes that if C is monotonic, then it admits at least one proper C -sequence; and

if C is also hard, then the sequence terminates with the unique maximal C -solution.

Since every hard choice structure is univalent, an implication is that for a monotonic,

hard choice structure, the unique C -sequence produces the unique C -tract.

Proposition 22 Let C be a choice structure. If C is monotonic, then it admits a proper

C -sequence Y 1, Y 2, . . . with Y k−1 6= Y k = Y k+1, and Y k is a C -solution. Furthermore,

if C is hard, then Y k is the unique C -tract.

Proof: Assume C is monotonic, and consider any ℓ such that Y ℓ $ Y ℓ+1. Note that

for each i, Y ℓ+1

i ∈ Ci(Y
ℓ), so by monotonicity there exists Y ℓ+2

i ∈ Ci(Y
ℓ+1) such that

Y ℓ+2

i ⊆ Y ℓ+1

i . Since Y 2 ⊆ Y 1, this yields a weakly decreasing sequence Y 1, Y 2, . . ., and

since X is finite, there must exist k such that Y k = Y k+1. This set Y k is evidently

a C -solution. Therefore, the sequence so-defined is a proper C -sequence. Now also

assume that C is hard, and suppose that Y k is not a maximal C -solution. Then there

is a C -solution Z % Y k. Note that Z /∈ {Y 1, . . . , Y k}, for otherwise the sequence would
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terminate with Z, rather than Y k. Moreover, Z ⊆ Y 1, so there is a smallest index ℓ

such that Z ⊆ Y ℓ but Z 6⊆ Y ℓ+1. Let Wi = Y ℓ
i ∪Zi for each i, and define W =

∏

i∈I Wi.

Note that, in fact, W = Y ℓ. Since C is hard and Y ℓ+1

i ∈ Ci(Y
ℓ) and Zi ∈ Ci(Z) for all

i, it follows that Y ℓ+1

i ∪Zi ⊆
⋂

Ci(W ), and since Y ℓ+1

i ∈ Ci(Y
ℓ), that Zi ⊆ Y ℓ+1

i for all

i, but then Z ⊆ Y ℓ+1, a contradiction. We conclude that Y k is maximal, as required.

By Proposition 21, Y k is the unique C -tract.

The algorithm provided in Proposition 22 is robust. A sequence Y 1, Y 2, . . . ∈ X

is an outer C -sequence if: (i) Y 1 = X, (ii) for all k ≥ 2, Y k =
∏

i∈I Y k
i , where Y k

i

contains a viable set Zk
i ∈ Ci(Y

k−1) for all i, and (iii) there exists k such that Y k is

a C -solution and Y ℓ $ Y ℓ+1 for all ℓ < k. Obviously, every proper C -sequence is an

outer C -sequence. The next result shows that the unique C -tract for a monotonic, hard

choice structure can be reached by computing any outer C -solution.

Proposition 23 Let C be a choice structure. If C is monotonic and hard, then for

every outer C -sequence Y 1, Y 2, . . . such that Y k is a C -solution, Y k is the unique C -

tract.

Proof: Assume C is monotonic and hard, let Y 1, Y 2, . . . be an outer C -sequence as

in the proposition, and suppose that Y k is not maximal. Let Y be a C -solution such

that Y % Y k, so k ≥ 2. Let Z2, . . . , Zk+1 satisfy Zℓ
i ∈ Ci(Y

ℓ−1) for all i and Zℓ ⊆ Y ℓ,

ℓ = 2, . . . , k + 1, and set Z1 = X. Since Y 2 ⊇ · · · ⊇ Y k+1, monotonicity implies that

Ci(Y
ℓ) contains a subset of Zℓ for all ℓ = 2, . . . , k, and we may therefore assume without

loss of generality that Z1 ⊇ Z2 ⊇ · · · ⊇ Zk+1. Note that Zk+1 ∈ Ci(Y
k) = Ci(Y

k+1),

and with Zk+1 ⊆ Y k+1, this implies Zk+1 = Y k+1 = Y k. Thus, Y % Zk+1. Let ℓ ≥ 2

be the smallest index such that Y 6⊆ Zℓ, so that Y ⊆ Zℓ−1. Let Wi = Yi ∪ Y ℓ−1

i for

each i, define W =
∏

i∈I Wi, and note that, in fact, W = Y ℓ−1. Since C is hard and

Yi ∈ Ci(Y ) and Zℓ
i ∈ Ci(Y

ℓ−1) for all i, it follows that Yi ∪Zℓ
i ⊆

⋂

Ci(W ) for all i. This

implies that Yi ⊆
⋂

Ci(Y
ℓ−1), and since Zℓ

i ∈ Ci(Y
ℓ−1), that Yi ⊆ Zℓ

i for all i. But then

Y ⊆ Zℓ, a contradiction. By Proposition 21, Y k is the unique C -tract.

Propositions 22 and 23 have useful implications for a dominance structure D that

is irreflexive, transitive, monotonic, and non-trivial. Letting C be the choice structure
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generated by D , the unique proper C -sequence is calculated by removing all dominated

strategies at each step: for k ≥ 2,

Y k
i =

{

xi ∈ Xi | for all yi ∈ Xi, not yiDi(Y
k−1)xi

}

.

By Proposition 22, the iterated exhaustive elimination of dominated strategies for all

players leads to the unique maximal C -solution. This yields the equivalences P ′(G) =

P ′′(G) and R′(G) = R′′(G) in Bernheim’s (1984) Propositions 3.1 and 3.2 (for the

special case of finite games). Proposition 23 implies that the outcome of this algorithm

is invariant with respect to order of elimination. An outer C -sequence can be calculated

by removing some dominated strategies at each step: for k ≥ 2,

Y k−1

i \ Y k
i =

{

xi ∈ Y k−1

i | for some yi ∈ Xi, yiDi(Y
k−1)xi

}

.

Applied to Shapley dominance, this yields the well-known result that the iterated re-

moval of strictly dominated strategies is invariant with respect to the order of elim-

ination. It generalizes Bernheim’s (1984) Propositions 3.1 and 3.2, showing that the

point rationalizable (resp. rationalizable) strategies can be reached by the arbitrary

elimination of strategies that are not best responses to the possible pure (resp. mixed)

strategy profiles for other players. Our propositions apply as well to the Börgers, mono-

tonic maximin, monotonic leximin, and the mixed Shapley choice structures, providing

new results for their corresponding solutions. For example, the unique B-tract can be

obtained by iteratively removing, for each player i, any strategy xi that is dominated in

the sense of Börgers. Our propositions do not apply to weak Shapley dominance, and

Börgers and Samuelson’s (1992) Example 4 demonstrates that there may be multiple

maximal W -solutions.

Finally, we examine the epistemic foundations of the maximal C -solution. A belief

system for i is a mapping βi :
⋃∞

n=1
In → X, where we interpret βi(i) as player i’s

beliefs about the choice sets of other players, with βi
i(i) being i’s own choice set; βi(j)

for j 6= i is i’s beliefs about j’s beliefs about the choice sets of other players, with βi
j(j)

being the choice set of j anticipated by i; βi(j1, j2) for j1 6= i is i’s beliefs about j1’s

beliefs about j2’s beliefs about the choice sets of other players, with βi
j2

(j1, j2) being

equal to βi
j2

(j1); and so on. A sequence (j1, . . . , jn) ∈ In is admissible for i if j1 6= i,
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and (when n ≥ 2) for all k = 1, . . . , n − 1, jk 6= jk+1.
13 A set Yi is C -rationalizable for

i if there is a belief system βi for i such that for all sequences j1, . . . , jn admissible for

i, we have (i) Yi = βi
i(i) ∈ Ci(β

i(i)), (ii) βi
jn

(j1, . . . , jn) = βi
jn

(j1, . . . , jn−1), and (iii)

βi
jn

(j1, . . . , jn−1) ∈ Cjn
(βi(j1, . . . , jn)), where we identify j0 with i. In particular, (iii)

implies that the conjectured beliefs of jn−1 specify that jn chooses a viable set, given

jn−1’s conjectured beliefs about jn’s beliefs. In this case, we say Yi is C -rationalized by

βi. Say Y ∈ X is C -rationalizable if Yi is C -rationalizable for all i.

Proposition 24 Let C be a choice structure. Then every C -solution is C -rationalizable.

Furthermore, if C is monotonic and hard, and if Y is C -rationalizable, then Y is con-

tained in the unique C -tract.

Proof: If Y is a C -solution, then we can specify that βi ≡ Y for all i to establish that

Y is C -rationalizable. Now assume C is monotonic and hard, let Y be C -rationalizable,

and let Yi be C -rationalizable by βi for each i. Fix player i. Define the collection

Y
i

j =

{

βi
j(j1, . . . , jn) |

either both n = 1 and j1 = i, or n ≥ 2
and (j1, . . . , jn) is admissible for i

}

of choice sets conjectured by i for j. Note that by condition (i) in the definition of

rationalizability, we have Yj ∈ Y
j

j . Let Yj =
⋃

i∈I Yj be the collection of choice sets

ascribed to j, and let Y =
∏

j∈I Yj be the collection of products of these sets. Since X

is finite, so is Y , and we may enumerate it as Y 1, Y 2, . . . , Y L. Note that the definition

of rationality implies that for all Y m, there exists Y ℓ such that for all j, Y m
j ∈ Cj(Y

ℓ).

Repeated application of the assumption that C is hard implies that for all j,
⋃L

ℓ=1
Y ℓ

j ⊆
⋂

Cj(
⋃L

ℓ=1
Y ℓ), so

⋃L
ℓ=1

Y ℓ is a C -base. Since C is monotonic, Proposition 1 yields

a C -solution Z ⊇
⋃L

ℓ=1
Y ℓ, and by Proposition 21, we may take Z to be the unique

maximal C -solution. Since Y ⊆
⋃L

ℓ=1
Y ℓ, we conclude that Y ⊆ Z, as required.

It follows that a strategy profile x is point rationalizable if and only if it is contained

in the unique maximal P-solution, and it is rationalizable if and only if it is contained in

the unique maximal R-solution, giving us the equivalences P (G) = P ′(G) and R(G) =

R′(G) in Bernheim’s Propositions 3.1 and 3.2 (for the special case of finite games).

13For simplicity, we define the belief system βi on non-admissible sequences, but that information is
not used in the definition of C -rationalizability.

42



With the results of Börgers (1993), we conclude that the maximal B-solution consists

of just the strategy profiles possible when it is common knowledge among the players

that each knows the others’ ordinal preferences and each maximizes expected utility

for compatible some von Neumann-Morgenstern preferences. Similarly, we obtain the

unique S -, S̃ -, M •-, and L •-tracts by removal of dominated strategies in any order.

5.2 Minimal Solutions

We turn now to uniqueness of minimal solutions, or C -cores, which provide the tightest

possible predictions in our framework. Because a strict Nash equilibrium is a minimal

solution for every choice structure, uniqueness of minimal solutions cannot hold gener-

ally, but uniqueness may hold for special classes of strategic form game. In fact, Shapley

(1964) proves uniqueness of the S -core for two-player, zero-sum games, and Duggan

and Le Breton (1999, 2001) prove uniqueness of the S̃ -core for the smaller class of tour-

nament games. We extend these results to a wider class of strategic form games, called

“equilibrium safe,” and to other dominance structures: we show that every equilibrium

safe game possesses a unique S -, B-, S̃ -, and R-core. Every two-player, zero-sum

game is equilibrium safe, but this class of games also includes multi-player games char-

acterized, broadly speaking, by the absence of equilibrium coordination problems.

The next proposition establishes that for a wide class of choice structures, if there

are multiple minimal solutions, then they must be pairwise disjoint.

Proposition 25 Let C be a monotonic, closed choice structure. If Y and Z are distinct

C -cores, then Y ∩ Z = ∅.

Proof: Let C be monotonic and closed, and let Y and Z be distinct C -cores. If

Y ∩ Z 6= ∅, then since C is closed, it follows that Y ∩ Z is an outer C -solution. Then

Proposition 1 yields a C -solution W ⊆ Y ∩ Z $ Y , contradicting minimality of Y .

Thus, to prove uniqueness of the C -core, it is sufficient to show that any two minimal

C -solutions have nonempty intersection. We proceed by focussing on the R-solutions

in a special class of games: a strategic form game Γ is equilibrium safe if there exists

a mixed strategy Nash equilibrium p∗ of its mixed extension Γ̃ such that for all mixed

strategy equilibria p and all i, ũi(p
∗
i , p−i) ≥ ũi(p); in this case, the equilibrium p∗ is called
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safe. Thus, if player i anticipates that the other players will play some equilibrium p,

i’s expected payoff is no worse playing a safe equilibrium strategy. Several sufficient

conditions for equilibrium safety are immediate: games with a unique mixed strategy

Nash equilibrium, games with any dominant strategy equilibria, and two-player, zero-

sum games are equilibrium safe; Appendix B contains more general sufficient conditions

for equilibrium safety. The next proposition establishes that every equilibrium safe game

possesses a unique R-core, and it extends this result to a family of choice structures

that, in a sense, encompass the rational choice structure. Given two choice structures

C and C ′, we say C is as heavy as C ′ if every C -solution is an outer C ′-solution. As

usual, we extend this concept to dominance structures (or mixed dominance structures)

by comparing the choice structures they generate. Obviously, a choice structure is as

heavy as itself.

Proposition 26 Assume Γ is equilibrium safe, and let C be a monotonic, closed choice

structure. If C is as heavy as R, then there is a unique C -core.

Proof: Assume C is monotonic, closed, and as heavy as R. Suppose that an equilibrium

safe game admits distinct C -cores Y and Z. By Proposition 25, Y ∩ Z = ∅. Since C

is heavier than R, it follows that Y and Z are outer R-solutions, and Proposition 1

yields R-solutions Y ′ ⊆ Y and Z ′ ⊆ Z. Letting p∗ denote a safe equilibrium, we claim

that σ(p∗) ⊆ Y . To see this, let p ∈ Ỹ be a mixed strategy Nash equilibrium of the

restricted game with strategy sets Y ′
i and payoffs given by the restriction of ui to Y ′

for each i. That p is a mixed strategy Nash equilibrium of the original game follows

since Y ′
i = BRi(Y

′) contains all best responses to p for each i. By the definition of

equilibrium safety, p∗i is a best response to p−i, and so therefore is each strategy in the

support of p∗i , which implies σi(p
∗
i ) ⊆ BRi(Y

′) = Y ′
i , as claimed. Similarly, σ(p) ⊆ Z ′,

contradicting Y ′ ∩ Z ′ = ∅. Thus, C admits a unique minimal C -solution.

The analysis in foregoing sections has revealed that S is as heavy as B and S̃ ,

which are both as heavy as R. We conclude that equilibrium safe games possess a

unique minimal solution for the Shapley, Börgers, mixed Shapley, and rational choice

structures. This extends Shapley’s (1964) result from two-player, zero-sum games to

the class of multi-player, equilibrium safe games. It complements Bernheim’s (1984)
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Proposition 3.2 by establishing existence of a unique minimal (rather than maximal)

rationalizable set, providing the tightest possible prediction consistent with rationaliz-

ability. It generalizes the uniqueness result of Duggan and Le Breton (1999,2001) for the

mixed saddle in tournament games to equilibrium safe games. Finally, it provides a new

result on uniqueness of the minimal Börgers solution. Appendix B contains straightfor-

ward extensions of Proposition 26 to classes of games that are equivalent (under certain

transformations) to equilibrium safe games.

Equilibrium safety is not necessary for uniqueness of S -, B-, S̃ -, or R-cores, as

the next example shows.

Example 14 Let |I| = 2, X1 = X2 = {a, b}, with payoffs as below.

a b

a (2,1) (1,1)

b (1,1) (2,1)

Here, {a, b} × {a, b} is the unique R-solution, and therefore the unique S̃ -, B-, and

S -solution as well. However, this game is not equilibrium safe: no other strategy gives

row player as high a payoff as a when column player picks a, but, when column player

picks b, b gives row player a strictly higher payoff than a.

The next example shows that we focus on maximal and minimal solutions out of

necessity: multiple C -solutions exist for the choice structures considered above, even in

a restricted class of two-player, symmetric, zero-sum games. Of course, consistent with

Propositions 21 and 26, there is a unique C -tract and unique C -core for these choice

structures. Because the example is highly structured, there appear to be no reasonable

conditions on games that would ensure uniqueness of solutions in general.

45



Example 15 Let |I| = 2, X1 = X2 = {a, b, c, d}, with zero-sum payoffs as below.

a b c d

a (0,0) (1,-1) (-1,1) (-1,1)

b (-1,1) (0,0) (-1,1) (1,-1)

c (1,-1) (1,-1) (0,0) (1,-1)

d (1,-1) (-1,1) (-1,1) (0,0)

Here, {a, b, c, d}×{a, b, c, d} is the unique S -, B-, S̃ -, and R-tract, but the C -core for

all of these dominance structures is {c} × {c}.

6 Conclusion

We provide a framework for the choice-theoretic analysis of strategic form games for a

broad spectrum of choice structures, and we establish a number of results: existence of

solutions, uniqueness and epistemic foundations of maximal solutions (and an iterative

procedure for their computation), and uniqueness of minimal solutions in equilibrium

safe games. Because we state the results abstractly, they can be applied to generate

insights into existing concepts, such as iterative elimination of strictly dominated strate-

gies and Shapley’s saddles, rationalizable and point rationalizable sets, and Börgers

dominance; and they have implications for new choice structures based on pessimistic

conjectures (e.g., monotonic maximin and leximin) and permitting the use of mixed

strategies (e.g., mixed Shapley). An advantage of the framework is that it resolves

strategic indeterminacy in a parsimonious way — modeling the players’ decisions via

choice sets, rather than mixed strategies — and it can accommodate choice structures

that reflect the strategic capabilities of players that are most realistic in a given envi-

ronment. A further advantage is that for many choice structures, maximal solutions

are easily calculated; see Brandt and Brill (2012) for recent work on the computation
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of solutions in our framework.

A problem not addressed in the current paper, following Sprumont’s (2000) analy-

sis of testable implications of Nash behavior, is to understand conditions under which

observed choice sets can be “rationalized” by certain classes of choice structure. Given

player set I and sets (Xi)i∈I of conceivable strategies, observed behavior can be rep-

resented by a correspondence B : X ⇉ 2X satisfying
⋃

B(Y ) ⊆ Y for all Y ∈ X,

where B(Y ) gives the products of viable choice sets when strategy sets are (Yi)i∈I .

One problem of interest then is to find axioms on B under which there exist payoff

functions (ui)i∈I and monotonic choice structures (Ci)i∈I such that for all Y ∈ X, the

collection B(Y ) consists of all C -solutions in the game (I, (Yi)i∈I , (ui|Y )i∈I). Of course,

there are abundant variations of this problem, as we could impose further properties

on choice structures or focus on a particular choice structure of interest, or we could

restrict attention to maximal or minimal C -solutions.

A hurdle to empirical applications of the framework lies in the structural estimation

of games that are solved via the choice-theoretic approach, a question that is outside

the scope of this paper; but an interesting aspect of the approach is that the choice

structure describing the players’ behavior could itself conceivably be considered as a

parameter to be estimated. We take it as an empirical question whether the strategic

behavior of real-world actors is more accurately described, e.g., by monotonic leximin

solution or by Börgers solutions.

A Proofs from Section 3

Proposition 1 Assume the choice structure C is monotonic. If Z is a C -base, and if

Y is an outer C -solution that is minimal among the collection

{

Y ′ ∈ X | Y ′ is an outer C -solution and Z ⊆ Y ′
}

,

then Y is a C -solution.

Proof: Let Y be an outer C -solution that is minimal among the outer C -solutions

containing the C -base Z. Since Y is an outer C -solution, it follows that for each i,

there exists Y ′
i ∈ Ci(Y ) such that Y ′

i ⊆ Yi. Let Y ′ =
∏

i∈I Y ′
i . If Y ′ = Y , then Y is

a C -solution. Otherwise, Y ′ $ Y . We claim that Y ′ is an outer C -solution: indeed,
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note that Y ′
i ∈ Ci(Y ) for all i and Y ′ ⊆ Y , so monotonicity yields Y ′′

i ∈ Ci(Y
′) with

Y ′′
i ⊆ Yi for all i, as claimed. Since Y ′

i ∈ Ci(Y ) for all i and Z ⊆ Y , monotonicity yields

Z ′
i ∈ Ci(Z) with Z ′

i ⊆ Y ′
i for all i. Since Z is a C -base, it follows that Zi ⊆ Z ′

i ⊆ Y ′
i

for all i. But then Y ′ is an outer C -solution containing Z and is a proper subset of Y ,

contradicting minimality of Y .

Proposition 2 Let D be a dominance structure and C the choice structure generated

by D . For all i, all Y ∈ X, and all Y ′
i ⊆ Xi, if Y ′

i ∈ Ci(Y ), then Y ′
i is minimal with

respect to set inclusion among the sets that are externally stable with respect to Di(Y );

furthermore, the converse holds if D is monotonic and transitive.

Proof: Consider any Y ∈ X, any i, and any Y ′
i ⊆ Xi. If Y ′

i ∈ Ci(Y ), then the set is

externally stable with respect to Di(Y ). If it is not minimal among those sets, then

there exists Y ′′
i $ Y ′

i that is also externally stable. Then there exists xi ∈ Y ′
i \ Y ′′

i , and

external stability yields yi ∈ Y ′′
i such that yiDi(Y )xi, but then xi and yi are distinct

elements of Y ′
i such that yiDi(Y )xi, contradicting internal stability. For the converse

direction, assume D is monotonic and transitive, and let Y ′
i be minimal among the

externally stable sets. It suffices to show that Y ′
i is internally stable with respect to

Di(Y ). Otherwise, there exist distinct xi, yi ∈ Y ′
i such that xiDi(Y )yi, so we can define

Y ′′
i = Y ′

i \{yi}. Consider any zi ∈ Xi \Y ′′
i . Then either zi = yi, in which case xiDi(Y )zi,

or zi ∈ Xi \ Y ′
i . In the latter case, there exists wi ∈ Y ′

i such that wiDi(Y )zi. If wi 6= yi,

then we have wi ∈ Y ′′
i with wiDi(Y )zi; and if wi = yi, then we have xiDi(Y )yiDi(Y )zi,

and transitivity of D implies xiDi(Y )zi. Thus, Y ′′
i is externally stable with respect to

Di(Y ) and is a proper subset of Y ′
i , contradicting minimality. We conclude that Y ′

i is

indeed externally stable, and therefore Y ′
i ∈ Ci(Y ).

Proposition 3 Assume the dominance structure D is transitive and monotonic. Then

the choice structure C generated by D is monotonic.

Proof: Consider any Y,Z ∈ X with Y ⊆ Z and any player i. Let Z ′
i ∈ Ci(Z). Note

that Z ′
i satisfies external stability with respect to Di(Z), and therefore, by monotonicity

of D , with respect to Di(Y ). Then we can define Y ′
i as any set that is minimal with
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respect to set inclusion among the subsets of Z ′
i that are externally stable with respect

to Di(Y ). By Proposition 2, it follows that Y ′
i ∈ Ci(Y ), as required.

Proposition 4 Assume the dominance structure D is transitive, monotonic, and weakly

irreflexive. Then the choice structure C generated by D is closed.

Proof: Consider any Y,Z ∈ X and any collections {Y ′
i } and {Z ′

i} such that for all i,

Y ′
i ∈ Ci(Y ), Z ′

i ∈ Ci(Z), and Y ′
i ∩ Z ′

i 6= ∅. Letting Wi = Y ′
i ∩ Z ′

i and W =
∏

i∈I Wi,

we must show that W is an outer C -solution. We claim that for all i, Wi is externally

stable with respect to Di(W ). Consider any i and any xi ∈ Xi \Wi, and assume without

loss of generality that xi /∈ Y ′
i . We identify an element wi ∈ Wi as follows. Because Y ′

i

is externally stable with respect to Di(Y ), there exists w1
i ∈ Y ′

i such that w1
i Di(Y )xi.

If w1
i ∈ Z ′

i, so that w1
i ∈ Wi, then set wi = w1

i , and note that monotonicity of Q implies

wiDi(W )xi. Otherwise, because Z ′
i is externally stable with respect to Di(Z), there

exists w2
i ∈ Z ′

i such that w2
i Di(Z)w1

i . If w2
i ∈ Y ′

i , then set wi = w2
i . Otherwise, we

again invoke external stability of Y ′
i , and so on. In case this procedure terminates with

wi = wk
i ∈ Wi, we apply monotonicity of D to deduce a sequence

wi = wk
i Di(W )wk−1

i · · · w1
i Di(W )xi,

and then transitivity of D implies wiDi(W )xi, establishing the external stability claim.

In case the procedure does not terminate, then because Xi is finite, there exist integers

k < ℓ such that wk
i = wℓ

i . Applying monotonicity of D , we then deduce a sequence

wℓ
iDi(W )wℓ−1

i · · · wk+1

i Di(W )wk
i ,

and transitivity of D implies wk
i Di(W )wk

i . Now letting wi be any element of Wi, weak

irreflexivity yields a sequence

wiDi(W )wk
i Di(W )wk−1

i · · · w1
i Di(W )xi,

and transitivity implies wiDi(W )xi. Thus, we have established the external stability

claim. Finally, for each i, let W ′
i be minimal among the subsets of Wi that are externally

stable with respect to Di(W ). By Proposition 2, it follows that W ′
i ∈ Ci(W ) for all i,

and therefore W is an outer C -solution.
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Proposition 5 Assume the dominance structure D is transitive, monotonic, weakly

irreflexive, and non-trivial. Then the choice structure C generated by D is hard.

Proof: Consider any Y,Z ∈ X and any collections {Y ′
i } and {Z ′

i} such that Y ′
i ∈ Ci(Y )

and Z ′
i ∈ Ci(Z) for all i. Letting W =

∏

i∈I(Yi∪Zi), we must show that Y ′
i ∪Z ′

i ⊆ Ci(W )

for all i. Consider any i, any xi ∈ Yi∪Zi, and any W ′
i ∈ Ci(W ), and assume without loss

of generality that xi ∈ Yi. We claim that xi ∈ W ′
i ; otherwise, because W ′

i is externally

stable with respect to Di(W ), there exists yi ∈ W ′
i such that yiDi(W )xi. Since Y ⊆ W ,

monotonicity of D implies yiDi(Y )xi. Then, because yi 6= xi, internal stability of Yi

with respect to Di(Y ) implies yi /∈ Yi, and external stability yields zi ∈ Yi such that

ziDi(Y )yi. By transitivity of D and ziDi(Y )yiDi(Y )xi, we have ziDi(Y )xi, and then

internal stability implies xi = zi, which implies xiDi(Y )xi. By weak irreflexivity, it

follows that for all wi ∈ Xi, wiDi(Y )xi. Applying internal stability again, we have

Yi = {xi}, and then external stability implies that for all wi ∈ Xi, xiDi(Y )wi. With

transitivity, this implies that Di(Y ) = Xi ×Xi, contradicting the assumption that D is

non-trivial. Therefore, xi ∈ W ′
i , and we conclude that Yi ∪ Zi ⊆

⋂

Ci(W ).

Proposition 6 Let D be a dominance structure. Then the monotonic kernel D• is

transitive, monotonic, and weakly irreflexive, and the choice structure generated by D•

is closed. Furthermore, if D is transitive, weakly irreflexive, and non-trivial, then D•

is non-trivial, and the choice structure it generates is hard.

Proof: Transitivity, monotonicity, and weak irreflexivity are evident. That the choice

structure generated by D• is closed then follows from Proposition 4. Now assume D

is transitive, weakly irreflexive, and non-trivial, and to show that D• is non-trivial,

suppose to the contrary that there exist i and Y ∈ X such that for all xi, yi ∈ Xi,

xiD
•
i (Y )yi. By transitivity of Di(Y ), there exists x∗

i ∈ Xi that is maximal in the sense

that for all yi ∈ Xi, if yiDi(Y )x∗
i , then x∗

i Di(Y )yi. By supposition, there exists y∗i ∈ Xi

such that y∗i Di(Y )x∗
i , so x∗

i Di(Y )y∗i Di(Y )x∗
i and transitivity yield x∗

i Di(Y )x∗
i . By weak

irreflexivity, we then have yiDi(Y )x∗
i for all yi ∈ Xi, and then by an application of

transitivity, we have xiDi(Y )yi for all xi, yi ∈ Xi, contradicting the assumption that D

is non-trivial. Thus, D• is non-trivial, and it follows from Proposition 5 that the choice

structure it generates is hard.

50



Proposition 7 Let D be a dominance structure, and let C • be the choice structure

generated by its monotonic kernel. If D is transitive and weakly irreflexive, then for all

i, all Y ∈ X, and all Y ′
i ⊆ Xi, Y ′

i ∈ C •
i (Y ) if and only if

(i) for all xi ∈ Y ′
i , there exists Z ∈ X with Z ⊆ Y such that for all yi ∈ Y ′

i , not

yiDi(Z)xi,

(ii) for all xi ∈ Xi \ Y ′
i and all Z ∈ X with Z ⊆ Y , there exists yi ∈ Y ′

i such that

yiDi(Z)xi.

Proof: Consider any i, any Y ∈ X, and any Y ′
i ⊆ Xi. First, assume Y ′

i ∈ C •
i (Y ).

If (i) is violated, then there exists xi ∈ Xi such that for all Z ⊆ Y , there exists

yi ∈ Y ′
i such that yiDi(Z)xi. In particular, there exists zi ∈ Y ′

i , and the foregoing

implies ziD
•
i (Y )xi, contradicting internal stability of Y ′

i . Thus, (i) holds. To verify

(ii), consider any xi ∈ Xi \ Y ′
i and any Z ⊆ Y . By external stability of Y ′

i , there exists

zi ∈ Y ′
i such that ziD

•
i (Y )xi, and in particular, there exists yi ∈ Xi such that yiDi(Z)xi.

By transitivity of D , we can further specify that yi is maximal, in the sense that for

all zi ∈ Xi, if ziDi(Z)yi, then yiDi(Z)xi. If yi ∈ Y ′
i , then (ii) is verified. Otherwise,

yi ∈ Xi \ Y ′
i , and there exists zi ∈ Xi such that ziDi(Z)yi. Then yiDi(Z)ziDi(Z)yi and

transitivity yield yiDi(Z)yi. Then, selecting any wi ∈ Y ′
i , weak irreflexivity implies that

wiDi(Z)yi, as required. Thus, (ii) holds.

Next, assume (i) and (ii) hold. To show that Y ′
i ∈ C •

i (Y ), we must establish internal

and external stability with respect to D•
i (Y ). Consider any xi ∈ Y ′

i . Then (i) yields

Z ⊆ Y such that for all zi ∈ Y ′
i , not ziDi(Z)xi. Suppose that there exists zi ∈ Xi \ Y ′

i

such that ziDi(Z)xi. By transitivity of D , we can specify that zi is maximal in the sense

defined above. By (ii), however, there exists yi ∈ Y ′
i such that yiDi(Z)ziDi(Z)xi, and

transitivity implies yiDi(Z)xi, a contradiction. Thus, ziDi(Z)xi holds for no zi ∈ Xi,

and it follows that yiD
•
i (Y )xi holds for no yi ∈ Xi, which delivers internal stability.

Now consider any xi ∈ Xi \Y ′
i . Then (ii) implies that for all Z ⊆ Y , there exists zi ∈ Y ′

i

such that ziDi(Z)xi. In particular, selecting any yi ∈ Y ′
i , we have yiD

•
i (Y )xi, delivering

external stability.

Proposition 8 Let D and D ′ be dominance structures. (i) If D is stronger than D ′,
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then every D-solution is an outer D ′-solution. (ii) If D subjugates D ′ and D ′ is tran-

sitive, then every D ′-solution is a D-base.

Proof: Let C and C ′ be the choice structures generated, respectively, by D and D ′.

To prove (i), assume D is stronger than D ′, and let Y be a D-solution. Then for all i,

Yi is externally stable with respect to Di(Y ), which implies that it is externally stable

with respect to D ′
i(Y ). Letting Y ′

i be minimal with respect to set inclusion among the

subsets of Yi that are externally stable with respect to D ′
i(Y ), Proposition 2 implies

that Y ′
i ∈ C ′

i (Y ). Thus, Y is an outer D ′-solution. To prove (ii), assume that D

subjugates D ′ and that D ′ is transitive. Consider any D ′-solution Y ′, any Yi ∈ Ci(Y
′),

and suppose that there exists xi ∈ Y ′
i \ Yi. Because Yi is externally stable, there exists

yi ∈ Yi such that yiDi(Y )xi. Because D subjugates D ′, there exists zi ∈ Xi \ {xi} such

that ziD
′
i(Y

′)xi. Because Y ′
i is internally stable, it follows that zi /∈ Y ′

i . Because Y ′
i is

externally stable, there exists wi ∈ Y ′
i such that wiD

′
i(Y

′)ziD
′
i(Y

′)xi, and transitivity of

D ′ implies wiD
′
i(Y

′)xi, contradicting internal stability. Thus, Y ′
i ⊆ Yi, and we conclude

that Y ′ is a D-base.

Proposition 9 Let D and D ′ be dominance structures. (i) If D is stronger than D ′,

and if D ′ is transitive and monotonic, then every D-solution includes some D ′-solution.

(ii) If D subjugates D ′, if D ′ is transitive, and if D is transitive and monotonic, then

every D ′-solution is included in some D-solution.

Proof: To prove (i), consider any D-solution Y . Since D is stronger than D ′, Propo-

sition 8 implies that Y is an outer D ′-solution. Since D ′ is transitive and monotonic,

Proposition 3 implies that the choice structure generated by D ′ is monotonic, and then

Proposition 1 yields a D ′-solution Y ′ ⊆ Y . To prove (ii), consider any D ′-solution Y ′.

Since D subjugates D ′ and D ′ is transitive, Proposition 8 implies that Y ′ is a D-base.

Since D is transitive and monotonic, Proposition 3 implies that the choice structure

generated by D is monotonic, and then Proposition 1 yields a D-solution Y ⊇ Y ′.

B Sufficient Conditions for Equilibrium Safety

In this appendix, we augment the sufficient conditions provided above for equilibrium

safety. We now focus on two classes of game: a strategic form game Γ is equilibrium
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interchangeable if for all mixed strategy Nash equilibria p and p′ of the mixed extension

Γ̃ and all i, (pi, p
′
−i) is an equilibrium; and Γ is safe if (a) there is a unique equilibrium

payoff vector (ui)i∈I , and (b) there is a mixed strategy Nash equilibrium p̃ such that,

for all i and all q−i ∈ X̃−i, ũi(p̃i, q−i) ≥ ui. In other words, a game is safe if each player

has a “good” equilibrium strategy. Clearly, any game with a unique mixed strategy

Nash equilibrium is both equilibrium interchangeable and safe. Every two-player, zero-

sum game is both equilibrium interchangeable and safe. Aumann (1961) defines almost

strictly competitive games, a class of two-player strategic form games generalizing two-

player, zero-sum games, that are both equilibrium interchangeable and safe.14 And

any game with a dominant strategy equilibrium is safe (but not necessarily equilibrium

interchangeable). The next proposition, the proof of which is self-evident, establishes

the sufficiency of these conditions for equilibrium safety.

Proposition 25 If a strategic form game Γ is equilibrium interchangeable or safe, then

it is equilibrium safe.

It is clear that a safe game need not be equilibrium interchangeable, and the next

example establishes the converse. Thus, the conditions are logically independent.

14For any bimatrix game (A1, A2), where A1 gives player 1’s payoffs and A2 player 2’s, a twisted

equilibrium is an equilibrium of the “twisted game” (−A2,−A1). Aumann defines a bimatrix game as
almost strictly competitive if (i) the set of equilibrium payoffs coincides with the set of twisted equilibrium
payoffs, and (ii) the sets of equilibria and twisted equilibria have non-empty intersection.
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Example 16 Let |I| = 2, X1 = {x1, x2, x3, x4, x5}, and X2 = {y1, y2, y3, y4, y5}, with

payoffs as below.

y1 y2 y3 y4 y5

x1 (0,0) (1,-1) (-1,1) (-2,0) (2,0)

x2 (-1,1) (0,0) (1,-1) (1,0) (-1,0)

x3 (1,-1) (-1,1) (0,0) (1,0) (-1,0)

x4 (0,-2) (0,1) (0,1) (-2,-1) (-1,-1)

x5 (0,2) (0,-1) (0,-1) (-1,-1) (-1,-2)

Note that the pair p = (p1, p2), where p1 = p2 = (1/3, 1/3, 1/3, 0, 0) is an equilibrium

with zero payoffs for the players. Moreover, these strategies guarantee the players

at least this payoff. Now define p′1 = p′2 = (0, 0, 0, 1/2, 1/2), and note that (p1, p
′
2)

and (p′1, p2) are equilibria but that (p′1, p
′
2) is not. Thus, this game is not equilibrium

interchangeable. It remains only to be checked that zero is the unique equilibrium

payoff. Consider any equilibrium q = (q1, q2), and define r1 = q1(x1) + q1(x2) + q1(x3)

and r2 = q2(y1) + q2(y2) + q2(y3). If r1 = r2 = 1, the players are essentially playing a

symmetric zero-sum game, so their payoff must be zero. If r1 < 1 and r2 = 1, player

1’s expected payoff from x4 and x5 is zero, so his payoff from q is zero. Thus, q2 = p2

(otherwise player 1 could deviate profitably) and 2’s payoff is zero. Similarly if r1 = 1

and r2 < 1. If r1 < 1 and r2 < 1, then player 1’s payoff from x4 and x5 is negative,

worse than p1, contradicting our assumption that q is an equilibrium.

Proposition 25 allows us to apply the results of Kats and Thisse (1992) on equilibrium

interchangeability. Their analysis uses the following more primitive conditions, defined

for strategic form games with possibly infinite strategy sets. The first condition is

defined only for two-player games and the second extends it to multi-player games.
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(i) A two-player game is strictly competitive if for all i and j 6= i and for all x, y ∈ X,

ui(yi, xj) > ui(x) ⇔ uj(yi, xj) < uj(x).

(ii) A strategic form game is unilaterally competitive if for all i, all xi, yi ∈ Xi, and all

x−i ∈ X−i,

(ui(yi, x−i) > ui(x)) ⇔ (∀j 6= i)(uj(yi, x−i) < uj(yi, x−i)).

(iii) A strategic form game is weakly unilaterally competitive if for all i, all xi, yi ∈ Xi,

and all x−i ∈ X−i,

(ui(yi, x−i) > ui(x)) ⇒ (∀j 6= i)(uj(yi, x−i) ≤ uj(x))

and

(ui(yi, x−i) = ui(x)) ⇒ (∀j 6= i)(uj(yi, x−i) = uj(x)).

Thus, a two-player game is strictly competitive if its payoffs are strictly Pareto optimal.

The idea of unilateral competitiveness extends this concept, but only applies the Pareto

optimality criterion to unilateral changes in strategies. The third condition weakens

unilateral competitiveness, now allowing for one player to improve his payoff with a

unilateral move, as long as no other player is made better off. The next theorem follows

directly from Theorem 25 and Kats and Thisse’s Theorem 2, where they prove the

sufficiency of their conditions for equilibrium interchangeability.

Proposition 26 Let Γ be a finite strategic form game. (i) If |I| = 2 and the mixed

extension Γ̃ is weakly unilaterally competitive, then Γ is equilibrium safe. (ii) If the

mixed extension Γ̃ is unilaterally competitive, then Γ is equilibrium safe.

Unfortunately, this result uses conditions on the mixed extension of Γ, which may

be difficult to verify. The next example shows that, even in two-player games, requiring

strict competitiveness of Γ itself is not sufficient for existence of the R-core or S̃ -core.
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Example 17 Let |I| = 2 and X1 = X2 = {a, b, c, d}, with payoffs below.

a b c d

a (5,1) (1,5) (2,2) (2,2)

b (1,5) (5,1) (2,2) (2,2)

c (2,2) (2,2) (5,1) (1,5)

d (2,2) (2,2) (1,5) (5,1)

This game is strictly competitive, but not equilibrium safe, as evidenced by the fact

that it has two R-cores (and S̃ -cores), {a, b} × {a, b} and {c, d} × {c, d}.

Two games, Γ = (I, (Xi)i∈I , (ui)i∈I) and Γ′ = (I ′, (X ′
i)i∈I , (u

′
i)i∈I), are order equiv-

alent if I = I ′; for all i, Xi = X ′
i; and for all i, all xi, yi ∈ Xi, and all x−i ∈ X−i,

ui(xi, x−i) ≥ ui(yi, x−i) ⇔ u′
i(xi, x−i) ≥ u′

i(yi, x−i).

In a two-player matrix game, for example, order equivalence means that the row player’s

ordering of cells in any given column is the same, and the column player’s ordering of

cells in any given row is the same. Relationships between payoffs in cells that do not

lie on the same row or column are unrestricted. The game in Example 17 does have a

unique S -core and B-core, as we will see is true of all two-player, strictly competitive

games, which are known to be order equivalent to two-player, zero-sum games.

Two games, Γ and Γ′, are best response equivalent if I = I ′; for all i, Xi = X ′
i;

and for all i and all p−i ∈ X̃−i, i’s pure strategy best responses to p−i in Γ and Γ′

coincide. Abusing notation slightly, BRi(p−i) = BR′
i(p−i). Two games may be order

equivalent but not best response equivalent, and they may be best response equivalent

but not order equivalent.15 It is clear that R-solutions are invariant under best response

equivalent transformations: if Γ and Γ′ are best response equivalent, then Y is an R-

15See Rosenthal’s (1974) Examples 5 and 6.
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solution of Γ if and only if it is an R-solution of Γ′. This gives us the following extension

of Proposition 26.

Proposition 27 Assume Γ′ is best response equivalent to a finite, equilibrium safe game

Γ, and let C be a monotonic, hard choice structure. If C is as heavy as R, then Γ′ has

a unique C -core.

Note that S -solutions are invariant with respect to order equivalent transformations

— if Γ and Γ′ are order equivalent, then Y is an S -solution of Γ if and only if it is

an S -solution of Γ′ — and that the same is true of B-solutions. Thus, we can extend

Proposition 26 even further for S -cores and B-cores.

Proposition 28 Assume that Γ′′ is order equivalent to Γ′, and that Γ′ is best response

equivalent to an equilibrium safe game Γ. Then Γ′′ has a unique S -core and a unique

B-core.

The preceding result immediately yields uniqueness of the S -core and B-core in

two-player strictly competitive games, which are order equivalent to zero-sum games.

The next example further illustrates the scope of the proposition.

Example 18 Let |I| = 2 and X1 = X2 = {a, b, c, d}, with payoffs below.

a b c d

a (5,1) (1,5) (3,3) (3,3)

b (1,5) (5,1) (3,3) (3,3)

c (3,3) (3,3) (5,1) (1,5)

d (3,3) (3,3) (1,5) (5,1)

This game is order equivalent (but not best response equivalent) to the game in Example

17. It is equilibrium safe, since p1 = p2 = (1/2, 1/2, 0, 0) is a safe equilibrium, and has

a unique R-core and unique S -core. Thus, as noted above, the game in Example 17

has a unique S -core and B-core as well.
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